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Chapter 1

Introduction and Overview

Optimal transport (OT) is designed to find the optimal mapping from a measure on

a space to another measure on a different space, which is formalized by the Monge-

Kantorovich problem [29]. The discrete formulation can be leveraged to find the most

efficient distribution of resources from a set of sources to a set of targets by consider-

ing heterogeneous constraints [15, 17]. The traditional framework to solve this prob-

lem is centralized but in some cases, a decentralized framework is more advantageous

for efficient computation, especially when the transport network gets large [36]. One

commonly adopted approach to distribute OT is using alternating direction method of

multipliers (ADMM) [5], which will be leveraged in this thesis.

In order to visualize OT’s application to resource allocation we employ the tradi-

tional mines and factories example. In this example, there is a community with multiple

mines and multiple factories that want to take in resources from the mines to manufac-

ture goods. The mine can harvest q amount of resources in a day and the factories can

take in p amount of resources to produce goods. Optimal transport will find the optimal

way to distribute the resources based on a metric, like utility or cost.

Other examples include, UPS distribution hubs used to transport and deliver pack-

ages to major cities, shown in Fig 1.1(a), or the distribution of government funds to fight
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Covid-19, depicted in Fig 1.1(b). All of these examples require a fair allocation of re-

sources and use sensitive data to calculate the transport strategy. Hence, it is imperative

to investigate how fairness and privacy can be incorporated into the optimal transport

algorithm design.

(a) A possible connection scheme of UPS distribu-
tion hubs in red to major cities in blue.

(b) A distribution of government funds to hospi-
tals to help fund the fight against the Covid-19 Pan-
demic.

Figure 1.1: Resource Allocation Examples

1.1 Fairness of Optimal Transport

Under the standard OT paradigm, the resource distribution scheme maximizes the

aggregated utilities of all participants in a centralized way, regardless of whether that

distribution is fair for the suppliers or receivers [35, 36]. As in the mines and factories

example, it may be that the most optimal distribution of the material is to have one fac-

tory receive 80% of the material while another receives only 20%. This is not fair to

the factory receiving the smaller amount of material, and could lead to that factory shut-

ting down. Thus, it is necessary to incorporate fairness during the transport mechanism

design for constrained resource allocation, especially in scenarios that require equity.
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To enable a fair allocation of resources, one approach is to include a fairness measure

in the objective function of the OT framework. In this way, the resulting transport plan

will have a balance between efficiency and fairness. Chapter 3 focuses on the design of

distributed OT that considers both fairness and efficiency holistically.

1.2 Security of Optimal Transport

The classic discrete OT framework does not consider that the resource suppliers and

receivers could be compromised by an attacker whose goal is to disrupt the efficiency of

the resource allocation. This could take the form of a node misrepresenting its parame-

ters, like its utility or amount of resources it can produce or take in. By misrepresenting

this information the node can give itself an unfair advantage in the resources allocation

plan, which can result in a source not giving out as many resources as it is able to, or a

node taking in more resources than it should. The results of the malicious attacks can

be disastrous for other nodes in the network.

To this end, our goal is to develop a more robust transport strategy using a game-

theoretic framework [4] that captures the interactions between the transport planner and

the adversary. Specifically, the planner designs the transport plan that maximizes the

social utility by anticipating the compromise of a set of participating nodes by the ad-

versary. In comparison, the attacker’s objective is to minimize the aggregated utility of

all the nodes under the transport plan. The attacker is stealthy, as it will not modify the

node’s preference information in an arbitrary manner but considers threshold and mag-

nitude constraints during decision-making. A detailed investigation of the OT security

and resiliency under the adversarial environment is the focus of Chapter 4.



4

1.3 Privacy of Optimal Transport

The previously described distributed algorithms still face threats from an attacker.

Specifically, when the nodes need to communicate the computed resource transport pref-

erences with the connected nodes at each update step in the algorithm, the information

could be intercepted by an adversary during its transmission over the communication

network (e.g., through an eavesdropping attack), after which the attacker can use it to

infer the private information at each node (e.g., node’s utility parameters used for the

design of transport plan).

The privacy concerns of the distributed OT motivate the development of an efficient

privacy-preserving mechanism that can protect the nodes’ sensitive utility information.

To do this, we resort to the powerful differential privacy technique [13, 14]. Specifically,

we develop an output variable perturbation-based differentially private distributed OT

algorithm, which instead of sharing the authentic transport strategies directly between

connected source and target nodes, it perturbs the transport decisions by adding random

noise drawn from an appropriate distribution with specified parameters at each step. The

proposed distributed algorithm in Chapter 5 prevents a leakage of sensitive information

of participants in the network even if the transport strategies negotiated between nodes

were captured by an adversary.

1.4 Related Works

Resource allocation has been investigated vastly in various fields with many appli-

cations, including communication networks [35], energy systems [3], critical infrastruc-

ture [19] and cyber systems [9]. To compute the optimal transport strategy efficiently, a
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number of techniques have been developed, such as simultaneous approximation [24],

population-based optimization [11], distributed algorithms [26, 36] and linear program-

ming [15]. Additionally, fair resource allocation methods are studied in [2, 10]. Re-

silient resource allocation methods under adversarial attacks are studied, specifically

jamming attacks [16], network topology attacks [31], and data falsification attacks [8].

Differentailly private algorithms are often studied in machine learning. For example,

perturbation-based ADMM algorithms were developed to improve privacy in classifica-

tion learning problems [37, 39]. Differential privacy has also been leveraged to investi-

gate privacy issues in empirical risk minimization [7, 27], support vector machines [40]

and deep learning [1]. Additionally, differential privacy has been applied to improve pri-

vacy of fog computing [12] and safety of vehicle network [38]. Lastly, a differentially

private continuous OT algorithm is developed in [23]. These works lay the foundation

for the algorithms developed in the coming chapters.

Previously Published Work: This thesis is based on my publications in the following

conferences and journals. The work on the fairness of distributed OT has been published

in the IEEE Conference on Information Sciences and Systems (CISS) [20]. The work

on security and resiliency of OT will appear in the IEEE Control System Letters (L-

CSS) [21]. Lastly, the work on differentially private distributed OT has been submitted

to IEEE Global Communications Conference (GLOBECOM) [22].

1.5 Organization of Thesis

This thesis first introduces the network architecture that resources are transported

over and the discrete formulation of optimal transport in Chapter 2. Next, the thesis de-

velops a distributed OT algorithm that considers the fairness of the resource allocation in
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Chapter 3. The thesis further develops a secure OT scheme under a deceptive adversary

that aims to disrupt the resource transport plan in Chapter 4. Lastly, a differentially pri-

vate distributed OT algorithm to protect the information at the source and target nodes

is constructed in Chapter 5. Chapter 6 concludes the thesis.



Chapter 2

Background

In order to understand distributed optimal transport, this chapter describes the net-

work architecture that resources are transported over and how a distributed algorithm

can be formed from the traditional discrete OT paradigm.

2.1 Network Structure

A transport network is composed of nodes and edges, in the case of resource allo-

cation, the structure can be seen as a bipartite graph where x ∈X := {1, ..., |X |} is

a target node taking in resources, and y ∈ Y := {|X |+ 1, ..., |X |+ |Y |} is a source

node supplying resources. Within the network, source nodes are connected to target

nodes, although a source node is not required to be connected to all target nodes. For

example, in Fig 2.1(a), where there are three source nodes and five target nodes, source

1 is only connected to target 1, source 2 is connected to targets 2, 3 and 4, and source

3 is connected to targets 4 and 5. The set of sources connected to target x is denoted

by Yx, and the set of target nodes connected to source node y is denoted by Xy. Note

that Xy, ∀y and Yx, ∀x are nonempty. Otherwise, the corresponding nodes are isolated

in the network and do not play a role in the considered optimal transport strategy de-

sign. Additionally, the graphs do not need to have the sources and targets separated as

7
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(a) Separated Groups (b) Non-separated Groups

Figure 2.1: Network Architecture

they are in Fig 2.1(a). The nodes can be intertwined such as the structure in Fig 2.1(b)

where the sources and targets are dispersed in a hexagonal shape. Both graphs are bi-

partite because there are two groups and a connection can only exist between nodes in

non-similar groups. The set of feasible transport paths, or edges, connecting targets to

sources is denoted by {x,y} ∈ E . The amount of resource that can be transported from

a source node or to a target node is bounded from below and above. This is denoted by

px and qy as the lower bounds for the source and target nodes respectively, and p̄x and

q̄y denotes the upper bounds. The subscripts x and y are used to denote which node the

bounds belong to.

2.2 Discrete Optimal Transport

The discrete formulation of optimal transport is useful for data-driven applications

specifically for resource allocation, but can also be used for transport between any two

finite sets. An example of an optimal distribution can be seen in Fig. 2.2. The traditional
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discrete formulation is a discretized version of the primal Monge-Kantorovich problem

[15, 28, 32].

max
πxy≥0

∑
xy

Uxyπxy

s.t. ∑
y∈Yx

πxy = p and ∑
x∈Xy

πxy = q
(2.1)

where πxy is the amount of resources allocated by source y for target x, Uxy : R+→ R is

the weight of utility between target x and source y, p is the amount of resources that can

be taken in by target x, and q is the amount resources that can be given out by source y.

This formulation specifically maximizes utility based on the connection between x and y.

In order to facilitate the distribution of discrete optimal transport, we offer an equivalent

formulation, based on [36], that captures utility from the source and the target nodes’

Figure 2.2: The distribution of finite sets X and Y after OT assignment. Red indicates
a source, blue indicates a target, and black indicates resources transferred from each
connection. The size of the circle shows how much resources each node has, can take in
or is being transferred at the connection.
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perspective. The formulation is as follows:

max
Π

∑
x∈X

∑
y∈Yx

txy(πxy)+ ∑
y∈Y

∑
x∈Xy

sxy(πxy)

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

(2.2)

where txy : R+ → R and sxy : R+ → R are utility functions for target node x con-

nected to source y and source node y connected to target x, respectively. The method

is to maximize the utility of the transport plan Π := {πxy}x∈Xy,y∈Y for the given net-

work. Furthermore, p̄x ≥ px ≥ 0, ∀x ∈X and q̄y ≥ qy ≥ 0, ∀y ∈ Y . The constraints

px ≤ ∑y∈Yx πxy ≤ p̄x and qy ≤ ∑x∈Xy πxy ≤ q̄y capture the limitations on the amount of

requested and transferred resources at the target x and source y, respectively.

The formulation in (2.2) is equivalent to (2.1) because, rather than summing over the

connections between targets and sources, {x,y} ∈ E , the objective in (2.2) sums over the

connections of each individual node, captured by ∑x∈Xy and ∑y∈Yx , and then aggregate

those summations with ∑x∈X and ∑y∈Y to get an aggregated utility for both the tar-

get and source sides respectively. Thus the problem in (2.2) captures the utility from

the perspective of the source and target nodes individually rather than the connection

between them as in problem (2.1).

In order to solve the maximization problem in (2.2), the following assumption needs

to be made.

Assumption 1. The utility functions txy and sxy are concave and monotonically increas-

ing, ∀x ∈X , ∀y ∈ Y .
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There are a number of functions of interest that satisfy the properties in Assumption

1. For example, the utility functions txy and sxy can adopt a linear form, indicating a

linear growth of payoff on the amount of transferred and consumed resources. txy and

sxy can also take a logarithmic form on the argument, representing the marginal utility

decreases with the amount of transported resources. From this assumption a convex

optimization problem is formulated below.

min
Π

∑
x∈X

∑
y∈Yx

− txy(πxy)+ ∑
y∈Y

∑
x∈Xy

−sxy(πxy)

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

(2.3)

By taking the opposite of the concave utility functions they become convex and mono-

tonically decreasing. Now, the functions are minimized to obtain the optimal value.

Doing this allows for the many advantages of convex optimization [6].

In order to facilitate the development of distributed algorithms in the coming chap-

ters, we introduce ancillary variables πxy,t and πxy,s. The subscripts t and s indicate that

the corresponding parameters are associated with a target node or source node, respec-

tively. We then set πxy = πxy,t and πxy = πxy,s, indicating the solutions proposed by the

targets and sources are consistent with the ones proposed by the central planner. With



12
this we can reformulate (2.3) to the following,

min
Πt∈Ft ,Πs∈Fs,Π

− ∑
x∈X

∑
y∈Yx

txy(πxy,t)− ∑
y∈Y

∑
x∈Xy

sxy(πxy,s)

s.t. πxy,s = πxy, ∀(x,y) ∈ E ,

πxy,t = πxy, ∀(x,y) ∈ E ,

px ≤ ∑
y∈Yx

πxy,t ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy,s ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

(2.4)

with the sets defined as,

Πt := {πxy,t}x∈Xy,y∈Y , Πs := {πxy,s}x∈X ,y∈Yx , (2.5)

Ft := {Πt |πxy,t ≥ 0, px ≤ ∑
y∈Yx

πxy,t ≤ p̄x, (x,y) ∈ E },

Fs := {Πs|πxy,s ≥ 0,qy ≤ ∑
x∈Xy

πxy,s ≤ q̄y, (x,y) ∈ E }. (2.6)

This formulation will be considered when developing distributed algorithms with fair-

ness, security and privacy in the following chapters.



Chapter 3

Fair and Efficient Distributed Optimal

Transport

A fair and efficient transport scheme can be achieved by incorporating a fairness

metric into the discrete OT formulation. In the formulation in (2.2) the central planner

devises an optimal transport strategy by maximizing the utility. In practice, some target

nodes receive more resources because of the inherent nature of the optimization prob-

lem. This efficient resource allocation plan yields a larger objective value. However,

it is not fair for some nodes if their requests for resources are ignored. For example,

in energy systems, the resilience planing should take into account these generally under

considered communities which are hit heavily by natural disasters [3]. Though, from the

central planner’s perspective, the resilience planning in these areas may not contribute

as significantly as other areas to the system’s utility by cost-benefit analysis.

In this chapter, we describe how such a metric can be incorporated into the optimal

transport paradigm and then distributed using alternating direction method of multipliers

(ADMM) to compute the transport plan more efficiently in large-scale networks.

13
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3.1 Problem Formulation

Recall the network structure outlined in section 2.1 where Xy is the set of target

nodes connected to source node y and Yx is the set of source nodes connected to target

node x. Moreover, recall the discrete formulation in (2.3), where there is no consid-

eration of fairness in the resource allocation objective function. One possible way to

achieve a fairer allocation scheme is to introduce a fairness measure to the objective

function in the optimal transport framework which admits the following formulation:

∑
x∈X

∑
y∈Yx

txy(πxy)+ ∑
y∈Y

∑
x∈Xy

sxy(πxy)

+ ∑
x∈X

ωx fx( ∑
y∈Yx

πxy),

(3.1)

where ωx ≥ 0 is a weighting constant for fairness, and fx : R+→ R is a fairness func-

tion. Note that ∑y∈Yx πxy is the total amount of resources received for target node x.

Thus, fx(∑y∈Yx πxy) quantifies the level of fairness by allocating ∑y∈Yx πxy resources to

each target x. To facilitate a fair transport strategy fx needs to be chosen strategically.

One consideration is that the marginal utility of the fairness term fx should decrease.

Otherwise, it will lead to an unfair distribution of resources, i.e., some target nodes

receive most of the resources in the network as the central planner aims to maximize

∑x∈X ωx fx(∑y∈Yx πxy). We have the following assumption on the properties of the fair-

ness function.

Assumption 2. The fairness function fx, ∀x∈X is concave and monotonically increas-

ing.

There can be various choices for the fairness function. One possible choice is a
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proportional fairness function [2]:

fx( ∑
y∈Yx

πxy) = log( ∑
y∈Yx

πxy +1), ∀x ∈X . (3.2)

To this end, the central planner’s goal is to devise a fair and efficient transport strategy

that maximizes the objective function (3.1) while taking into account the same set of

constraints on resources capacity in (2.3).

3.2 Distributed Algorithm for Fair and Efficient Trans-

port Strategy Design

The optimal allocation of resources can be computed in a central manner using dis-

crete OT, but one primal concern is the computational feasibility. It can be computation-

ally expensive to obtain a fair and efficient resource distribution plan when the number

of sources and targets becomes enormous, as can be observed in a large-scale network

for resource allocation. Therefore, the next objective is to devise a fair and efficient

transport strategy from a centralized way to a fully distributed fashion.

3.2.1 Feasibility and Optimality

Before developing the distributed algorithm, we first analyze the feasibility of the

formulated optimization problem.

Lemma 1. It is feasible to find a fair transport plan Π if the following conditions are
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satisfied:

∑
y∈Yx

q̄y ≥ px, ∀x ∈X , (3.3)

∑
y∈Y

q̄y ≥ ∑
x∈X

px. (3.4)

The two inequalities in Lemma 1 have natural interpretations. Inequality (3.3) en-

sures that all the target nodes’ requests can be fulfilled, while (3.4) indicates that the

total demand of resources is less than the total supply.

We next characterize the existence of optimal solution to the formulated problem.

Lemma 2. Under Assumptions 1 and 2, and the inequalities (3.3) and (3.4), there exists

a fair and efficient transport strategy that maximizes the objective (3.1) while satisfying

the constraints in (2.2).

The existence of the optimal solution is guaranteed by the concavity of txy, sxy and

fx, as well as the feasibility of the problem resulting from (3.3) and (3.4). In order to

formulate the problem, the first step is to rewrite the optimization problem from (2.4),

introducing the fairness constraint. To this end, the reformulated optimal transport prob-
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lem under fairness consideration is presented as follows:

min
Πt∈Ft ,Πs∈Fs,Π

− ∑
x∈X

∑
y∈Yx

txy(πxy,t)− ∑
y∈Y

∑
x∈Xy

sxy(πxy,s)

− ∑
x∈X

ωx fx( ∑
y∈Yx

πxy,t)

s.t. πxy,s = πxy, ∀(x,y) ∈ E ,

πxy,t = πxy, ∀(x,y) ∈ E ,

px ≤ ∑
y∈Yx

πxy,t ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy,s ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

(3.5)

with the sets defined in (2.5) and (2.6). Note that due to the constraints, the optimal

solutions, Πt , Πs and Π of (3.5) are all equivalent.

3.2.2 Distributed Algorithm

The next focus is to develop a distributed algorithm to solve the problem (3.5). Let

αxy,s and αxy,t be the Lagrangian multipliers associated with the constraint πxy,s = πxy

and πxy,t = πxy, respectively. The Lagrangian then facilitates the application of ADMM

in the distributed algorithm design. Specifically, the Lagrangian associated with the
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optimization problem (3.5) can then be written as follows:

L(Πt ,Πs,Π,αxy,t ,αxy,s) =− ∑
x∈X

∑
y∈Yx

txy(πxy,t)− ∑
y∈Y

∑
x∈Xy

sxy(πxy,s)

− ∑
x∈X

ωx fx( ∑
y∈Yx

πxy,t)+ ∑
x∈X

∑
y∈Yx

αxy,t(πxy,t−πxy)

+ ∑
y∈Y

∑
x∈Xy

αxy,s(πxy−πxy,s)+
η

2 ∑
x∈X

∑
y∈Yx

(πxy,t−πxy)
2

+
η

2 ∑
y∈Y

∑
x∈Xy

(πxy−πxy,s)
2, (3.6)

where η > 0 is a positive scalar constant controlling the convergence rate in the algo-

rithm. In (3.6), the last two terms η

2 ∑x∈X ∑y∈Yx(πxy,t−πxy)
2 and η

2 ∑y∈Y ∑x∈Xy(πxy−

πxy,s)
2, act as penalization and are quadratic. Hence, the Lagrangian function L is strictly

convex, ensuring the existence of a unique optimal solution.

Continuing with the steps of ADMM, we use the Lagrangian to develop the dis-

tributed algorithm and is presented in the following proposition.

Proposition 1. The iterative steps of ADMM to (3.5) are summarized as follows:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

txy(πxy,t)−ωx fx( ∑
y∈Yx

πxy,t)

+ ∑
y∈Yx

αxy,t(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))2, (3.7)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

(sxy(πxy,s)− cxy(πxy,s))

− ∑
x∈Xy

αxy,s(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2,

(3.8)
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πxy(k+1) = argmin
πxy
−αxy,t(k)πxy +αxy,s(k)πxy

+
η

2
(πxy,t(k+1)−πxy)

2 +
η

2
(πxy−πxy,s(k+1))2, (3.9)

αxy,t(k+1) = αxy,t(k)+η(πxy,t(k+1)−πxy(k+1))2, (3.10)

αxy,s(k+1) = αxy,s(k)+η(πxy(k+1)−πxy,s(k+1))2, (3.11)

where Πx̃,t := {πxy,t}y∈Yx,x=x̃ represents the solution at target node x̃ ∈X , and Πỹ,s :=

{πxy,s}x∈Xy,y=ỹ represents the proposed solution at source node ỹ ∈ Y . In addition,

Fx,t := {Πx,t |πxy,t ≥ 0,y ∈ Yx, px ≤ ∑y∈Yx πxy,t ≤ p̄x}, and Fy,s := {Πy,s|πxy,s ≥ 0,x ∈

Xy,qy ≤ ∑x∈Xy πxy,s ≤ q̄y}.

Proof. See Appendix A.

Iterations (3.7)-(3.11) can be simplified down to four steps, and the results are sum-

marized below.

Proposition 2. The iterations (3.7)-(3.11) can be simplified as follows:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

txy(πxy,t)−ωx fx( ∑
y∈Yx

πxy,t)

+ ∑
y∈Yx

αxy(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 , (3.12)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)− ∑
x∈Xy

αxy(k)πxy,s

+
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2 , (3.13)

πxy(k+1) =
1
2
(πxy,t(k+1)+πxy,s(k+1)) , (3.14)

αxy(k+1) = αxy(k)+
η

2
(πxy,t(k+1)−πxy,s(k+1)) . (3.15)
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Proof. See Appendix B

Iterations (3.7)-(3.11) can be iterated through to obtain a fair and efficient resource

transport strategy whose convergence is guaranteed [5]. The first step, (3.12) updates

the transport plan on the target nodes. Note that the fairness is explicitly considered

during the solution updates, in (3.8). Step (3.13) updates the transport plan on the source

nodes. Next, step (3.14) is the negotiation between the target and source nodes. Finally,

(3.15) updates the dual variable, αxy. For convenience, we summarize the iterations

from Proposition 2 in Algorithm 1.

Algorithm 1 Fair Distributed Algorithm
1: while Πx,t and Πy,s not converging do
2: Compute Πx,t(k+1) using (3.12), for all x ∈Xy
3: Compute Πy,s(k+1) using (3.13), for all y ∈ Yx
4: Compute πxy(k+1) using (3.14), for all {x,y} ∈ E
5: Compute αxy(k+1) using (3.15), for all {x,y} ∈ E
6: end while
7: return πxy(k+1), for all {x,y} ∈ E

3.3 Discussions on the Fair Distributed Algorithm

In this section, we discuss several crucial aspects of the proposed distributed algo-

rithm for fair and efficient resource allocation mechanisms including the effects and

implementation of fairness.

3.3.1 Fairness and Efficiency Trade-off

The fairness of the transport scheme is ensured during the updates of solutions.

As shown in (3.12), the level of fairness is regulated by the parameter ωx, x ∈ X .
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Specifically, ωx trades off between the efficiency and fairness of the transport strat-

egy. With a larger ωx, the fairness term has a more significant impact on the so-

lution, yielding a fairer resource allocation plan. For every target x, it maximizes

fx(∑y∈Yx πxy,t) at each step. The concavity of fx guarantees that it is impossible for

a single target in the network to receive all the resources. Together with the penalization

terms ∑y∈Yx αxy(k)πxy,t +
η

2 ∑y∈Yx (πxy,t−πxy(k))
2, it also ensures that the request for

resources from each target x will not be arbitrarily large.

Another interesting observation is that after both the target node x and source node y

proposing their strategy (based on (3.12) and (3.13)), the central manager will mediate

both requests by taking an average of the fair solution πxy,t and the efficient solution πxy,s

as shown in (3.14). Hence, the final solution yielded by Algorithm 1 will be both fair

and efficient.

3.3.2 Implementation of Fairness

In the reformulated problem (3.5), we associated the fairness function, fx, ∀x ∈X ,

with the corresponding target node. This leads to natural interpretations that when

proposing the transport strategy, each target needs to be aware of the fairness of the re-

source allocation over networks. In a resource distribution market, the supplier (source

node) may not care where its resources are finally allocated. However, a target cares

whether it gets more or less resources than another target. For example, if a large com-

pany is distributing resources to customers, the company (the source) does not care

where their product goes as long as they sell the product, while consumers care if only a

few people are able to buy the product. This observation is consistent with the iteration

steps (3.12) and (3.13), where each target x ∈X , aims to maximize the fairness term

ωx fx(∑y∈Yx πxy,t), while each source y ∈ Y , merely maximize its own utility.
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Note that during the problem reformulation, the fairness term could also be applied

to the source (supplier side). Then, the objective function in (3.5) becomes the fol-

lowing: −∑x∈X ∑y∈Yx txy(πxy,t)−∑y∈Y ∑x∈Xy sxy(πxy,s)−∑x∈X ωx fx(∑y∈Yx πxy,s). A

distributed algorithm can be designed to solve this reformulated problem by using sim-

ilar techniques as those in Section 3.2. When the fairness term is associated with the

source side, it means that all the suppliers need to inherently consider fairness when dis-

tributing resources. It also can be interpreted that if a source enters the market, it needs

to comply with the agreed fairness rules in the resource allocations.

3.4 Case Studies

In this section, we corroborate the algorithm for distributed optimal transport with

the fairness consideration with numerical case studies. We consider a scenario with

five target nodes and two source nodes and a transport network structure connecting all

source nodes to both target nodes. Figure 2.1(a) shows the network structure of resource

transportation. We define the upper bound, p̄x for target node x ∈X = {1,2} and q̄y for

source nodes y ∈ Y = {3,4,5,6,7}. The lower bounds, qy and px are 0 for all nodes.

There is utility associated with each for both the target and source nodes. We adopt

linear utility functions as follows: txy(πxy) = δxyπxy, and sxy(πxy) = σxyπxy− ζxyπxy,
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∀{x,y} ∈ E . The corresponding parameters are selected as:

[δxy]x∈X ,y∈Y =

1 3 1 3 2

2 2 4 1 2


[σxy]x∈X ,y∈Y =

3 3 5 4 5

4 3 5 3 6


[ζxy]x∈X ,y∈Y =

1 2 1 2 1

2 1 3 1 2


We consider proportional fairness in the resource allocation, i.e., the fairness func-

tion admits the form shown in (3.2).

3.4.1 Fair and Distributed Resource Allocation

We first show the effectiveness of Algorithm 1. Specifically, we compare the optimal

transport strategies with and without fairness considerations using Algorithm 1. For the

algorithm with fairness, we set the weighting factor ωx = 3. We focus on comparing the

algorithms induced social utility. The social utility is the aggregate of the payoffs of the

sources and targets and the benefits of fairness in the resource allocation. The results are

shown in Fig. 3.1. Fig. 3.1(a) shows the distributed algorithm (both with and without

fairness consideration) converges to the corresponding centralized optimal solution πo
xy

(i.e., problem (3.5) is solved directly). Note that in Fig. 3.1(a) that the algorithm with

fairness converges to a higher social utility. The increase in the social utility is due to

the addition of fairness when designing the resource transport scheme. It also shows

that the fairness has little effect on the convergence of the algorithm. In Fig. 3.1(b), the

fairer transport scheme is compared to one without fairness. Without fairness most of
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(a) Social utility under transport strategies (b) Fair vs. unfair allocation scheme

(c)
√

∑x∈X ∑y∈Yx(πxy(k)−πo
xy)

2 (d) Distance residual

Figure 3.1: Impact of fairness consideration on the transport strategy design using Al-
gorithm 1.

the resources go to target nodes 3, 4 and 5. When fairness is considered all of the targets

get resources and targets 3, 4 and 5 still get the most resources. Fig. 3.1(c) and 3.1(d)

shows the residual of transport strategy. The residual measures the difference between

the strategy at the current update and the centralized optimal solution. It also highlights

that the residual goes to 0 around k = 50, which demonstrates the effectiveness and

convergence of the designed distributed algorithm.
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3.5 Conclusion

This chapter investigated fair and efficient transport of a limited amount of resources

in a network of participants with various preferences. The designed distributed algo-

rithm can successfully yield the identical transport plan designed under the centralized

manner, making our algorithm applicable to large-scale networks. The fairness is explic-

itly promoted in the algorithm, through bargaining and negotiations between each pair

of resource supplier (source) and resource receiver (target). Throughout the negotiation

steps, the sources maximize their revenue but need to consider the fairness requests.

Similarly, the targets optimize the fairness but should take into account the efficiency of

resource allocation as well. The negotiation/algorithm terminates when the two parties

reach a consensus.



Chapter 4

Secure and Resilient Distributed Discrete

Optimal Transport

In this chapter, we formulate a discrete distributed optimal transport algorithm while

considering a deceptive adversary. An adversary could modify a node’s preference in-

formation or alter threshold and magnitude constraints during the decision-making pro-

cess. To counteract the adversarial manipulation, this chapter develops a game-theoretic

approach for secure and resilient OT design.

4.1 Problem Formulation

The formulation of adversarial optimal transport is based on (2.3) while incorporat-

ing the attacker’s behavior.

4.1.1 Adversarial Optimal Transport

The attacker’s goal is to minimize the aggregated transport utility by compromising

the preference coefficients in the target’s utility functions (which can happen at the infor-

mation exchange stage). Specifically, the parameters in the utility function txy are com-

26
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promised, for x ∈Xa, y ∈ Yx, where Xa denotes a subset of adversarial receiver nodes.

Then, Xo := X \Xa is the set of uncompromised targets. We denote by t̃xy,ξxy the

modified utility under the attack, where ξxy represents the magnitude of the adversarial

modifications on the corresponding parameters. For example, when the utility function

admits a linear form as txy(πxy) = δxyπxy, where δxy > 0 is a utility parameter, the com-

promised utility form under the deception attack becomes t̃xy,ξxy(πxy) = (δxy + ξxy)πxy.

Additionally, if txy takes a form of txy(πxy) = δxy min(ζx,πxy), where ζx denotes a thresh-

old after which the benefit of consuming more resources for target x does not increase,

the compromised utility form can be constructed as t̃xy,ξxy(πxy) = (δxy +ξxy,1)min{ζx +

ξxy,2,πxy}. As another example, when txy takes a form of txy(πxy) = δxy min(ζxy,πxy),

where ζxy denotes a threshold after which the benefit of consuming more resources

for target x from source y does not increase, the compromised utility form can be con-

structed as t̃xy,ξxy(πxy) = (δxy+ξxy,1)min{ζxy+ξxy,2,πxy}. In this scenario, the attacker’s

action includes both ξxy,1 and ξxy,2, ∀x ∈Xa, y ∈ Yx. For a general scenario, we denote

by Ξ := {ξxy}x∈Xa,y∈Yx the attacker’s deceptive strategy. Then, the adversarial optimal

transport can be formulated as follows.

max
Π

min
Ξ

∑
x∈Xo

∑
y∈Yx

txy(πxy)+ ∑
y∈Y

∑
x∈Xy

sxy(πxy)

+ ∑
x∈Xa

∑
y∈Yx

t̃xy,ξxy(πxy)+ ∑
x∈Xa

∑
y∈Yx

l(ξxy)

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

ξξξ x ∈Ax, ∀x ∈Xa,

(4.1)
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where ξξξ x := [ξx1,ξx2, ...,ξx|Yx|], for x ∈Xa; and Ax is the attacker’s feasible action set

on the target node x ∈Xa and l : R→ R+ is a function capturing the cost of the attack.

Remark: The solution to the adversarial OT problem is related to the robust OT de-

sign. Robust OT also admits a minimax formulation but its goal is to find an optimal

solution in the presence of structural and known uncertainties. Comparatively, in the ad-

versarial OT, such uncertainty is replaced by strategic attacks, and the designed transport

plan should be resistant to adversarial manipulations.

4.2 Adversarial Optimal Transport under Linear Utili-

ties

In this section, we consider utility functions admitting a linear form for both the

sender and receiver. Specifically, txy(πxy)= δxyπxy and sxy(πxy)= γxyπxy, where δxy,γxy ∈

R+. To design the optimal transport plan, the transport planner needs to know the util-

ity parameters including δxy, γxy, ∀x ∈X ,y ∈ Yx. Thus, the source and target nodes

need to report their parameters and one way to achieve this is through communications.

The wireless channel enabling the communication is vulnerable to cyber attacks. The

attacker can disrupt the communication by various techniques, such as jamming and

distributed denial of service attacks. Therefore, it is imperative for the central plan-

ner to develop resilient transport strategies under the adversarial environment. In the

considered scenario, we assume that the attacker is able to compromise a subset of re-

ceiver nodes in the network, denoted by Xa. One interpretation is that the nodes in Xa

do not have a secure communication protocol with the central planner. In comparison,

the nodes in the set Xo = X \Xa are able to set up high-confidence communication

channels and hence are secure from adversarial attacks.
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The attacker compromises the sensitive data δxy, x ∈Xa,y ∈ Yx, reported by the

vulnerable target nodes and stealthily modifies them to new values aiming to decrease

the social utility of the resource allocation. The adversarial disruption can be regarded as

a data poisoning attack, under which the data point δxy is changed to δ̃xy := δxy+ξxy, for

x ∈Xa,y ∈ Yx. Here, ξxy denotes the action of the attacker, representing the magnitude

of data modification to the particular data point δxy. For convenience, we follow the

notations in (4.1), where Ξ denotes the attacker’s malicious manipulations on the data

points and ξξξ x is the attackers action on the target node x ∈Xa.

To this end, the adversarial OT can be formulated in the following max-min format:

max
Π

min
Ξ

U(Π,Ξ) = ∑
x∈Xo

∑
y∈Yx

δxyπxy + ∑
y∈Y

∑
x∈Xy

γxyπxy

+ ∑
x∈Xa

∑
y∈Yx

(δxy +ξxy)πxy + ca ∑
x∈Xa

‖ξξξ x‖1

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E ,

ξξξ x ∈Ax, ∀x ∈Xa,

(4.2)

where ca ∈ R+ is a non-negative cost coefficient and Ax is the feasible action set of the

attacker on target node x, x∈Xa. U is the objective value under strategies Π and Ξ. The

term ca ∑x∈Xa ‖ξξξ x‖1 captures the cost of the attack. The sparsity induced by the l1 norm

is a convex approximation of the l0 norm [5, Chapter 6] and indicates that the attacker

has constraints on the number of compromise of utility parameters at a particular node

x ∈Xa. The attacker is a minimizer of (4.2) as its goal is to minimize the aggregated

transport utility reflected by the first three terms in the objective function U while using
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the least costly attack scheme captured by the last term in U .

If the attacker modifies all the data parameters significantly, it is easy for the planner

to detect such adversarial perturbations. Also, the data δ̃xy after compromise should still

be non-negative, otherwise, the deception can be identified straightforwardly. Thus, the

action set Ax needs to be carefully modeled to capture the attacker’s deceptive behavior.

One form of Ax can be chosen as follows:

Ax = {ξξξ x|‖ξξξ x‖2
2 ≤ κx,ξξξ x +δδδ x ≥ 000}, x ∈Xa, (4.3)

where κx ∈R+ denotes the upper limit of the standard norm of adversarial modifications

at the target node x∈Xa by the attacker; δδδ x := [δx1;δx2; ...;δx|Yx|]; and 000 is a zero vector

with appropriate dimension.

Problem (4.2) can be seen as a two-person zero-sum game denoted by G, where the

transport planner is a maximizer and the attacker is a minimizer. The solution to the

game G is characterized by the Nash equilibrium which predicts the outcome of the

optimal transport strategy under adversarial environment. The formal definition of the

Nash equilibrium strategy [4] is presented as follows.

Definition 1 (Nash Equilibrium). The strategy pair {Π∗,Ξ∗} is a saddle-point Nash

equilibrium of game G if

U(Π,Ξ∗)≤U(Π∗,Ξ∗)≤U(Π∗,Ξ), ∀ Π,Ξ (4.4)

where U is the objective function in (4.2).

Solving game G requires addressing the formulated max-min problem (4.2). Specif-

ically, both the central planner and the attacker need to compute their solutions holis-
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tically. This centralized computation paradigm does not scale well as the number of

nodes in the transport network becomes large. Furthermore, to compute the solution Π,

the central planner is required to have a complete information on the transport network,

including the sensitive parameters of all participants’ preferences. Thus, it is imperative

to design a computationally efficient mechanism to solve game G. Our subsequent goal

is to develop a distributed algorithm to compute the equilibrium transport strategy which

also preserves the privacy of the participants to some extent.

4.3 Analysis and Distributed Algorithm

This section aims to design a holistic and fully distributed algorithm to compute the

optimal strategies of the attacker and the participants in the transport network.

4.3.1 Equivalence between Max-Min and Minimax Problems

Before designing the algorithm, we prove that the formulated max-min problem

(4.2) is equivalent to its minimax counterpart and hence show the existence of Nash

equilibrium to game G. Specifically, the following results are shown.

Proposition 3. The max-min problem (4.2) yields the same solution as its minimax coun-

terpart, i.e., minΞ maxΠ U(Π,Ξ) subject to the same set of the constraints as in (4.2).

Thus, there exists saddle point Nash equilibrium to game G. However, such equilibrium

is not necessarily unique.

Proof. The equivalence between max-min and minimax problems directly follows from

the von Neumann’s minimax theorem [25]. As the objective function U is not strictly

concave in Π and not strictly convex in Ξ, the Nash equilibrium is not necessarily unique

[4, Chapter 4].
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Note that Proposition 3 facilitates a convenient design of efficient mechanisms called

best-response dynamics in finding the equilibrium strategies. We will describe this ap-

proach in detail in the ensuing sections.

4.3.2 Distributed Updates on the Deception Strategy

The attacker deceives the transport planner by compromising δxy, x ∈Xa,y ∈ Yx,

strategically. As the attacker’s goal is to minimize U , a smaller δ̃xy (hence a smaller

δxy) will decrease the utility at the corresponding target node as indicated by the term

∑x∈Xa ∑y∈Yx(δxy + ξxy)πxy. However, simply modifying the values of all δxy, ∀x ∈

Xa,y ∈ Yx, to their minimum does not guarantee to minimize U . One reason is that

the transport strategy will be changed under the attack. Though the value of the term

∑x∈Xa ∑y∈Yx(δxy + ξxy)πxy decreases, the other terms such as ∑x∈Xo ∑y∈Yx δxyπxy and

∑y∈Y ∑x∈Xy γxyπxy may increase under the attack. Thus, the attacker’s deceptive strat-

egy is nontrivial to devise.

In the following, we describe how to leverage best-response dynamics to compute

the strategy. Specifically, the attacker updates its decision Ξ by fixing the transport

planner’s strategy Π′= {π ′xy}x∈Xy,y∈Y . In this regard, the first two terms in the objective

function U(Π,Ξ) and the first three constraints in (4.2) can be safely ignored as they are

irrelevant with the attacker’s deceptive strategy design. Thus, the attacker solves the

following optimization problem:

min
Ξ

∑
x∈Xa

∑
y∈Yx

ξxyπ
′
xy + ca ∑

x∈Xa

‖ξξξ x‖1

s.t. ξξξ x ∈Ax, ∀x ∈Xa.

(4.5)

The attacker can design the optimal deceptive strategy Ξ∗ in a distributed fashion. First,
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we observe that the cost function in (4.5) is decoupled across vulnerable target nodes.

Then, the optimal ξξξ
∗
x , ∀x ∈Xa, can be obtained separately. Solving (4.5) is thus equiv-

alent to addressing |Xa| sub-problems as follows, for x ∈Xa,

min
ξξξ x

∑
y∈Yx

ξxyπ
′
xy + ca‖ξξξ x‖1

s.t. ξξξ x ∈Ax.

(4.6)

(4.6) can be reformulated as the following, for x ∈Xa:

min
ξξξ x,χχχx

∑
y∈Yx

ξxyπ
′
xy +111Tχχχx

s.t. ξξξ x ∈Ax,

caξξξ x ≤ χχχx,

caξξξ x ≥−χχχx,

(4.7)

where 111 is a vector of appropriate dimension with all ones; T denotes the transpose op-

erator; and χχχx is an auxiliary |Yx|-dimensional decision variable. Note that the objective

function in (4.7) is linear and the constraints are convex, and thus (4.7) can be solved

efficiently.

Equivalence between problems (4.6) and (4.7): First, we can rewrite ca‖ξξξ x‖1 as the

following: ∑
|ξξξ x|
i=1 abs(caξξξ x,i), where ξξξ x,i is the i-th element of ξξξ x and abs(·) denotes an

operator of taking the absolute value. Thus, the objective function of (7) can be recast as

∑y∈Yx ξxyπ ′xy+∑
|ξξξ x|
i=1 abs(caξξξ x,i). We then introduce an auxiliary variable χχχx with a same

dimension as ξξξ x that satisfies the condition abs(caξξξ x,i)≤ χχχx,i, ∀i. Then the optimization
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problem

min
ξξξ x

∑
y∈Yx

ξxyπ
′
xy +

|ξξξ x|

∑
i=1

abs(caξξξ x,i)

s.t. ξξξ x ∈Ax,

can be reformulated as

min
ξξξ x,χχχx

∑
y∈Yx

ξxyπ
′
xy +

|χχχx|

∑
i=1

χχχx,i

s.t. ξξξ x ∈Ax,

abs(caξξξ x,i)≤ χχχx,i, ∀i = 1, ..., |χχχx|.

Note that ∑
|χχχx|
i=1 χχχx,i is equivalent to 111Tχχχx. In addition, abs(caξξξ x,i)≤ χχχx,i can be written

as −χχχx,i ≤ caξξξ x,i ≤ χχχx,i, ∀i. Putting it in a vector form yields −χχχx ≤ caξξξ x ≤ χχχx. Thus,

we obtain the formulation of (4.7).

4.3.3 Distributed Updates on the Transport Strategy

Under the best-response mechanism, the transport planner determines the transport

strategy by regarding the deceptive strategy Ξ′ = {ξ ′xy}x∈Xa,y∈Yx as fixed. Thus, the

planner can omit the last term in the objective function U(Π,Ξ) and the last constraint



35
in (4.2) when making the decision. The planner’s problem can be formulated as follows.

max
Π

∑
x∈Xo

∑
y∈Yx

δxyπxy + ∑
y∈Y

∑
x∈Xy

γxyπxy

+ ∑
x∈Xa

∑
y∈Yx

(δxy +ξ
′
xy)πxy

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X ,

qy ≤ ∑
x∈Xy

πxy ≤ q̄y, ∀y ∈ Y ,

πxy ≥ 0, ∀{x,y} ∈ E .

(4.8)

Solving (4.8) in a centralized manner requires the transport planner to know all pa-

rameters including δxy and γxy, ∀{x,y} ∈ E . The next goal is to design a distributed

method to compute the optimal Π in (4.8).

First, auxiliary variables πxy,t and πxy,s from (2.4) are introduced to (4.8). These two

transport plans should be equal to each other to reach a consensus. Thus, additional

constraints πxy,t = πxy and πxy = πxy,s, ∀{x,y} ∈ E are included. Then, (4.8) can be

reformulated as follows:

min
Πt∈Ft ,Πs∈Fs

− ∑
x∈Xo

∑
y∈Yx

δxyπxy,t− ∑
y∈Y

∑
x∈Xy

γxyπxy,s

− ∑
x∈Xa

∑
y∈Yx

(δxy +ξ
′
xy)πxy,t

s.t. πxy,t = πxy,∀{x,y} ∈ E ,

πxy = πxy,s,∀{x,y} ∈ E ,

(4.9)

where the sets Πt and Πs are defined in (2.5) and Ft and Fs are defined in (2.6).
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The Lagrangian associated with (4.9) is:

L(Πt ,Πs,Π,αxy,t ,αxy,s) =− ∑
x∈Xo

∑
y∈Yx

δxyπxy,t− ∑
y∈Y

∑
x∈Xy

γxyπxy,s

− ∑
x∈Xa

∑
y∈Yx

(
δxy +ξ

′
xy
)

πxy,t + ∑
x∈X

∑
y∈Yx

αxy,t (πxy,t−πxy)

+ ∑
y∈Y

∑
x∈Xy

αxy,s (πxy−πxy,s)+
η

2 ∑
x∈X

∑
y∈Yx

(πxy,t−πxy)
2

+
η

2 ∑
x∈X

∑
y∈Yx

(πxy−πxy,s)
2 .

(4.10)

Here, αxy,t and αxy,s are Lagrangian multipliers associated with the constraints, and η is

a positive constant.

Proposition 4. We obtain the following steps applying the ADMM algorithm to (4.9):

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

δxyπxy,t + ∑
y∈Yx

αxy,t(k)πxy,t

+
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 ,

(4.11)

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

(
δxy +ξ

′
xy
)

πxy,t

+ ∑
y∈Yx

αxy,t(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 ,

(4.12)

where (4.11) is used for x ∈Xo and (4.12) for x ∈Xa.

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

γxyπxy,s + ∑
x∈Xy

αxy,s(k)πxy,s

+
η

2 ∑
x∈Xy

(πxy(k)−πxy,s) ,

(4.13)
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πxy(k+1) ∈ argmin
πxy

αxy,t(k)πxy +αxy,s(k)πxy

+
η

2
(πxy,t(k+1)−πxy)

2 +
η

2
(πxy−πxy,s(k+1))2,

(4.14)

αxy,t(k+1) = αxy,t(k)+η(πxy,t(k+1)−πxy(k+1))2, (4.15)

αxy,s(k+1) = αxy,s(k)+η(πxy(k+1)−πxy,s(k+1))2, (4.16)

where Πx̃,t = {πxy,t}y∈Yx,x=x̃ and Πỹ,s = {πxy,s}x∈Xy,y=ỹ denote the transport strategy

computed by target node x̃ and source node ỹ, respectively. Additionally, we define

Fx,t := {Πx,t |πxy,t ≥ 0,y ∈ Yx, px ≤ ∑y∈Yx πxy,t ≤ p̄x} and Fy,s := {Πy,s|πxy,s ≥ 0,x ∈

Xy,qy ≤ ∑x∈Xy πxy,s ≤ q̄x}.

Proof. See Appendix A.

Proposition 5. Iterations (4.11)-(4.16) can be simplified to five steps resulting in:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

δxyπxy,t + ∑
y∈Yx

αxy,t(k)πxy,t

+
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 ,

(4.17)

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

(
δxy +ξ

′
xy
)

πxy,t

+ ∑
y∈Yx

αxy,t(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 ,

(4.18)

where we use (4.17) for x ∈Xo and (4.18) for x ∈Xa.

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

γxyπxy,s + ∑
x∈Xy

αxy,s(k)πxy,s

+
η

2 ∑
x∈Xy

(πxy(k)−πxy,s) ,

(4.19)
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πxy(k+1) =
1
2
(πxy,t(k+1)+πxy,s(k+1)) , (4.20)

αxy(k+1) = αxy(k)+
η

2
(πxy,t(k+1)−πxy,s(k+1)) . (4.21)

Proof. See Appendix B.

Theorem 1. The algorithm described in Proposition 5 converges to an optimal solution.

Proof. As (4.17)-(4.21) are equivalent to (4.11)-(4.16), so it is sufficient to show that

(4.11)-(4.16) converge to the optimal solution. The convergence of (4.11)-(4.16) directly

follows from the general arguments in [5, Section 3.2]. Therefore, the iterations (4.17)-

(4.21) converge to the optimal solution of (4.9).

In the above proposed distributed algorithm, each node computes its transport strat-

egy based on the local information, i.e., information of connected nodes rather than all

the nodes. The nodes update their strategies iteratively by communicating with con-

nected neighbors. This is different from the centralized computation where the cen-

tral planner needs to know all nodes’ information to design the transport plan and then

broadcasts the decision to the nodes.

4.3.4 Integrated Distributed Algorithm

We combine the algorithms for the attacker and the participants into one distributed

algorithm. The integrated algorithm follows the updates below.

ξξξ x(k+1) ∈arg min
ξξξ x,χχχx

∑
y∈Yx

ξxyπxy(k)+111Tχχχx

s.t. ξξξ x ∈Ax, caξξξ x ≤ χχχx, caξξξ x ≥−χχχx.

(4.22)
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Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

δxyπxy,t + ∑
y∈Yx

αxy(k)πxy,t

+
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 , for x ∈Xo,

(4.23)

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

(δxy +ξxy(k))πxy,t

+ ∑
y∈Yx

αxy(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 , for x ∈Xa,

(4.24)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

γxyπxy,s + ∑
x∈Xy

αxy(k)πxy,s

+
η

2 ∑
x∈Xy

(πxy(k)−πxy,s) ,

(4.25)

πxy(k+1) =
1
2
(πxy,t(k+1)+πxy,s(k+1)) , (4.26)

αxy(k+1) = αxy(k)+
η

2
(πxy,t(k+1)−πxy,s(k+1)) . (4.27)

The convergence of the integrated distributed algorithm is worth investigation. We-

have the following result.

Theorem 2. The designed integrated distributed algorithm (4.22)-(4.27) converges to a

saddle-point equilibrium.

Proof. Based on Proposition 3, we know that there exists an equilibrium with {ξξξ ∗x}x∈Xa

and Π∗ to the minimax game G. Theorem 1 further shows that the max-problem (4.8)

converges to the best response of the min-problem (4.7). Note that the trajectory of best

response dynamics for continuous concave-convex zero-sum games always converges

to saddle points [18]. Thus, the developed integrated distributed algorithm (4.22)-(4.27)

converges to {ξξξ ∗x}x∈Xa and Π∗.

For convenience, we summarize the integrated distributed algorithm in Algorithm 2.
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Algorithm 2 Integrated Distributed Algorithm With Deceptive Adversary
1: while ξξξ x, Πx,t and Πy,s not converged do
2: Compute ξξξ x(k+1) using (4.22), ∀x ∈Xa
3: Compute Πx,t(k+1) using (4.23), ∀x ∈Xo
4: Compute Πx,t(k+1) using (4.24), ∀x ∈Xa
5: Compute Πy,s(k+1) using (4.25), ∀y ∈ Y
6: Compute πxy(k+1) using (4.26), ∀{x,y} ∈ E
7: Compute αxy(k+1) using (4.27), ∀{x,y} ∈ E
8: end while
9: return ξξξ x(k+1), ∀x ∈Xa and πxy(k+1), ∀{x,y} ∈ E

4.4 Case Studies

This section corroborates Algorithm 2 for distributed OT while considering adver-

sarial opponents. We consider the first case with five target nodes and two source nodes

with a network structure connecting every source node to every target node. The net-

work structure follows similarly from Fig. 2.1(a) except the network is complete in this

case study. The upper bounds for the source nodes are p̄1 = 2, p̄2 = 3, p̄3 = 4, p̄4 = 3,

p̄5 = 2, q̄6 = 5, and q̄7 = 5.5. The lower bound for all nodes are set to 0. Additionally,

we consider linear utility functions txy(πxy) = δxyπxy, and sxy(πxy) = γxyπxy,∀{x,y} ∈ E .

The corresponding parameters in the linear functions are selected as follows:

[δxy]x∈X ,y∈Y =

4 12 4 12 8

8 8 16 4 4

 ,

[γxy]x∈X ,y∈Y =

6 4.5 12 6 9

3 6 7.5 9 12

 .
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Furthermore, adversary’s parameters are ca = 0.5 and κx = 15, ∀x ∈Xa, and the decep-

tive targets include nodes 2 and 5. We next design the resilient transport strategy using

the proposed distributed Algorithm 2.

First, we show that the algorithm works and converges to the same value obtained

by the centralized method. We also compare the transport strategies when the network

has and does not have adversaries. When there is an adversary, we use a combination

of (4.23) (for benign targets) and (4.24) (for deceptive targets) to calculate Πx,t(k+1).

When there is no adversary, meaning none of the nodes are compromised, we only use

(4.24) to compute Πx,t .

The results of the case studies are shown in Fig. 4.1. Specifically, Fig. 4.1(a) shows

the social utility which is the aggregated payoff of all nodes. Fig. 4.1(a) confirms that

the algorithm converges to the centralized solution both with and without attacks. Note

that when considering attacks, the algorithm converges to a lower social utility. This is

due to the fact that the algorithm accounts for the adversarial impacts which decreases

the desired utility between the source node and the compromised target node. Fig. 4.1(b)

highlights the distance residual of the transport strategy, which measures the difference

between the strategy at each step and the equilibrium solution.

The attacker’s strategy ξξξ x is shown in Fig. 4.2(a). For both compromised nodes, the

deceptive strategies ξξξ 2 and ξξξ 5 converge to a nonzero values, indicating that the attacker

is actively affecting the transport plan. Fig. 4.2(b) further illustrates this phenomenon

as the resource allocation strategies are different in the two investigated cases.

We further investigate a larger scale network with 3 source nodes and 30 target nodes

and every target is connected to every source node. The parameters are generated ran-

domly following uniform distributions: δxy ∼U(6,11), γxy ∼U(7,12), p̄x ∼U(5,10),

and q̄y ∼U(67,75). Nodes 8, 15, and 25 are considered to be possibly compromised
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(a) Social Utility (b) Distance Residual

Figure 4.1: Impact of the adversarial attacks on the transport strategy design using Al-
gorithm 2. (a) and (b) depict the trajectories of social utility and residual of transport
strategy, respectively.

(a) Attacker’s Strategy (b) Transport Plan

Figure 4.2: The strategy of the attacker and resulting transport plan. (a) shows the
attacker’s strategy at the target nodes 2 and 5. (b) shows the corresponding transport
plan under two scenarios.

with ca = 0.5 and κx = 40. The obtained results are shown in Fig. 4.3. The results also

converge to the centralized solutions. We can conclude that the designed algorithm is

applicable to large-scale networks.
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(a) Social Utility (b) Distance Residual

(c) Attacker’s Strategy (d) Transport Plan

Figure 4.3: Example of a larger-scale network. (a) and (b) depict the trajectories of so-
cial utility and residual of transport strategy, respectively. (c) and (d) show the attacker’s
strategy and the corresponding transport plans, respectively.

4.5 Conclusion

In this chapter, an adversarial discrete optimal transport framework for resource

matching in which the participating nodes could be malicious by reporting untruthful

preference parameters was formulated. We have developed a distributed algorithm for

computing the strategic resource allocation strategies which are resilient to such attacks.

The designed algorithm converges to the same solution as the one designed by a central-
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ized planner, and it is applicable to large scale networks susceptible to deceptive attacks.

The adversarial behavior is specifically acknowledged in the algorithm when a partici-

pating node is compromised. Each connected pair of target and source nodes negotiate

on the their proposed transport plans, and thus the compromised node’s actions is taken

into account in the final allocation schemes. The algorithm terminates when the sources

and targets reach a consensus.



Chapter 5

Differentially Private Distributed Opti-

mal Transport

When transport information is shared between connected nodes during strategy up-

dates, an attacker can use that information to infer private data at each node, which raises

significant privacy concerns. This chapter investigates how differential privacy can be

leveraged to protect source and target node data. To achieve this goal we first describe

the distributed optimal transport algorithm, and then discuss where and how differential

privacy can be added to the algorithm.

5.1 Non-Private Distributed Algorithm

We start from working directly from the discrete OT formulation in (2.4) as the pri-

vacy measures are not considered directly in the objective function of the minimization

problem. It is necessary to add the following assumption to Assumption 1 about the

utility functions.

Assumption 3. The utility functions txy and sxy are continuously differentiable with t ′xy≤

ρ and s′xy ≤ ρ , where ρ is a positive constant.

45
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The Lagrangian from (2.4) is formulated as follows:

L(Πt ,Πs,Π,αxy,t ,αxy,s) =− ∑
x∈X

∑
y∈Yx

txy(πxy,t)

− ∑
y∈Y

∑
x∈Xy

sxy(πxy,s)+ ∑
x∈X

∑
y∈Yx

αxy,t(πxy,t−πxy)

+ ∑
y∈Y

∑
x∈Xy

αxy,s(πxy−πxy,s)+
η

2 ∑
x∈X

∑
y∈Yx

(πxy,t−πxy)
2

+
η

2 ∑
y∈Y

∑
x∈Xy

(πxy−πxy,s)
2, (5.1)

where η > 0 is a positive scalar constant controlling the convergence rate in the algo-

rithm designed below.

Note that in (5.1), the last two terms of the Lagrangian η

2 ∑x∈X ∑y∈Yx(πxy,t −πxy)
2

and η

2 ∑y∈Y ∑x∈Xy(πxy−πxy,s)
2, acting as penalization, are quadratic. Hence, the La-

grangian function L is strictly convex, ensuring the existence of a unique optimal solu-

tion.

We then can apply ADMM to the minimization problem in (2.4).

Proposition 6. The iterative steps of applying ADMM to problem (2.4) are summarized

as follows:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

txy(πxy,t)

+ ∑
y∈Yx

αxy,t(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))2, (5.2)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)

− ∑
x∈Xy

αxy,s(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2,

(5.3)
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πxy(k+1) = argmin
πxy
−αxy,t(k)πxy +αxy,s(k)πxy

+
η

2
(πxy,t(k+1)−πxy)

2 +
η

2
(πxy−πxy,s(k+1))2, (5.4)

αxy,t(k+1) = αxy,t(k)+η(πxy,t(k+1)−πxy(k+1))2, (5.5)

αxy,s(k+1) = αxy,s(k)+η(πxy(k+1)−πxy,s(k+1))2, (5.6)

where Πx̃,t := {πxy,t}y∈Yx,x=x̃ represents the solution at target node x̃ ∈X , and Πỹ,s :=

{πxy,s}x∈Xy,y=ỹ represents the proposed solution at source node ỹ ∈ Y . In addition,

Fx,t := {Πx,t |πxy,t ≥ 0,y ∈ Yx, px ≤ ∑y∈Yx πxy,t ≤ p̄x}, and Fy,s := {Πy,s|πxy,s ≥ 0,x ∈

Xy,qy ≤ ∑x∈Xy πxy,s ≤ q̄y}.

Proof. See Appendix A.

Again the steps can be simplified down to four steps, and the results are summarized

below.

Proposition 7. The iterations (5.2)-(5.6) can be simplified as follows:

Πx,t(k+1) ∈ arg min
Πx,t∈Fx,t

− ∑
y∈Yx

txy(πxy,t)

+ ∑
y∈Yx

αxy(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 , (5.7)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)

− ∑
x∈Xy

αxy(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2 , (5.8)

πxy(k+1) =
1
2
(πxy,t(k+1)+πxy,s(k+1)) , (5.9)
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αxy(k+1) = αxy(k)+
η

2
(πxy,t(k+1)−πxy,s(k+1)) . (5.10)

Proof. See Appendix B.

For convenience, we summarize the distributed OT algorithm into Algorithm 3.

Algorithm 3 Distributed OT Algorithm
1: while Πx,t and Πy,s not converging do
2: Compute Πx,t(k+1) using (5.7), for all x ∈Xy
3: Compute Πy,s(k+1) using (5.8), for all y ∈ Yx
4: Compute πxy(k+1) using (5.9), for all {x,y} ∈ E
5: Compute αxy(k+1) using (5.10), for all {x,y} ∈ E
6: end while
7: return πxy(k+1), for all {x,y} ∈ E

5.2 Differentially Private Algorithm

In this section, we first present the privacy concerns in the developed distributed OT

in Section 5.1. We then develop a differentially private distributed OT algorithm which

promotes nodes’ privacy explicitly during decision updates.

5.2.1 Privacy Concerns in the Distributed OT

In the distributed OT paradigm highlighted in Algorithm 3, the intermediate results

are shared between connected nodes during updates. This sharing mechanism raises

privacy concerns as an adversary that can access this result (e.g, through eavesdrop-

ping attack) has the ability to infer the participants’ private information. Specifically,

the adversary could leverage the compromised information Πx,t(k) and Πy,s(k) at each

update step, k, to infer the node’s private information including the sensitive preference
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parameters in the utility functions txy and sxy. We denote the set of private preference

information at node p by Dp, p ∈P .

Next, we use an example to further illustrate the node’s private information set.

Specifically, we consider utility functions admitting a linear form for both the sender

and receiver: txy(πxy) = δxyπxy and sxy(πxy) = γxyπxy, where δxy,γxy ∈ R+. Then, for

a target node x ∈ X , we have the set Dx = {δxy : ∀y ∈ Yx}. Similarly for a source

node y ∈ Y , we have the set Dy = {γxy : ∀x ∈Xy}. The information contained in Dp is

crucial for developing optimal transport plans. Leakage of such private information is

undesired in many resource allocation scenarios, especially those with societal impacts.

For example, in the distribution of scarce vaccine resources, these preference parameters

could indicate the severity of epidemics in different neighborhoods (modeled by nodes).

It is obvious that each participant does not want to leak this piece of information to other

unauthorized parties.

To this end, we aim to protect the privacy of each node in the transport network using

differential privacy [14]. Specifically, we propose adding randomness to the transport

decisions communicated between each pair of source-target nodes during updates, and

hence prevent the adversary from learning the sensitive utility parameters of the nodes

simply based on the transport decisions. To achieve this goal, first, let Dp and D′p be

two information/data sets differ by one data point (utility parameter). In other words,

their Hamming Distance is equal to 1, denoted by H(Dp,D′p) = 1. Here, H(Dp,D′p) =

∑
|Dp|
i=1 1{i : di 6= d′i}, where di and d′i denote the ith data point in the information sets Dp

and D′p, respectively. Recall that the date points in these sets refer to the nodes’ utility

parameters which we aim to protect from leakage under the condition that the adversary

intercepts the transport plans. The formal definition of differential privacy is presented

below.
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Definition 2 (βp(k)-Differential Privacy). Consider the transport network G = {P,E },

where P is composed of both source nodes and target nodes, and E is the set of edges

connecting the nodes. At each node p ∈P , there is an information set Dp which is

used to compute the resource transport plan. Let R be a randomized counterpart of

Algorithm 3. Further, let β (k)=
(
β1(k),β2(k), ...,β|P|(k)

)
∈R|P|+ , where βp(k)∈R+ is

the privacy parameter of node p at iteration k. Consider the outputs Πx,t(k) and Πy,s(k)

at iteration k of Algorithm 3. Let D′p be any information set such that H(D′p,Dp) = 1

and Π̃x,t(k) and Π̃y,s(k) be the corresponding outputs of Algorithm 3 while using the

information set D′p. The algorithm R is βp(k)-differentially private for any D′p for all

nodes p ∈P and for all possible sets of outcome solutions S, if the following condition

is satisfied at every iteration k:

Pr[Πp(k) ∈ S]≤ exp(βp(k)) ·Pr[Π̃p ∈ S], (5.11)

where Πp(k) =


Πp,t(k), if p ∈X ,

Πp,s(k), if p ∈ Y ,

and Π̃p(k) =


Π̃p,t(k), if p ∈X ,

Π̃p,s(k), if p ∈ Y .

5.2.2 Output Variable Perturbation

In order to ensure that the sensitive preference information at each node remains

private when transport plans are published over the network, we develop a differentially

private algorithm based on output variable perturbation. This algorithm involves adding

random noise to the output decision variables Πx,t(k+1) and Πy,s(k+1) during updates.

More specifically, the random noise vectors, εx(k+1) ∈ R|Yx| and εy(k+1) ∈ R|Xy| are

added to the variables Πx,t(k+ 1) and Πy,s(k+ 1) obtained by (5.7) and (5.8), respec-

tively.
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Recall that p ∈P = X ∪Y and thus p = x, ∀x ∈X , and p = y, ∀y ∈ Y . The

random noise vector εp(k) is generated according to a distribution with density function

Fp(ε)∼ e−ξp(k)||ε||. Here, ξp(k) =
ρ

η
βp(k), where βp is a privacy term at each node p.

Thus, the proposed solutions at the target node x and the source node y at step k+1

admit

Π
∗
x,t(k+1) = Πx,t(k+1)+ εx(k+1),

Π
∗
y,s(k+1) = Πy,s(k+1)+ εy(k+1), (5.12)

where Π∗x,t and Π∗x,t are perturbed solutions of Πt
x and Πt

x, respectively. The distributed

OT algorithm with output perturbation includes the following steps:

Πx,t(k+1) ∈ arg min
Πt

x∈F t
x

− ∑
y∈Yx

txy(πxy,t)

+ ∑
y∈Yx

αxy(k)πxy,t +
η

2 ∑
y∈Yx

(πxy,t−πxy(k))
2 , (5.13)

Π
∗
x,t(k+1) = Πx,t(k+1)+ εx(k+1), (5.14)

Πy,s(k+1) ∈ arg min
Πy,s∈Fy,s

− ∑
x∈Xy

sxy(πxy,s)

− ∑
x∈Xy

αxy(k)πxy,s +
η

2 ∑
x∈Xy

(πxy(k)−πxy,s)
2 ,

(5.15)

Π
∗
y,s(k+1) = Πy,s(k+1)+ εy(k+1), (5.16)

π
∗
xy(k+1) =

1
2
(
π
∗
xy,t(k+1)+π

∗
xy,s(k+1)

)
, (5.17)

αxy(k+1) = αxy(k)+
η

2
(
π
∗
xy,t(k+1)−π

∗
xy,s(k+1)

)
. (5.18)

As a result of the perturbation in (5.14) and (5.16), Π∗x,t(k) and Π∗y,s(k) are random-
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ized. Specifically, within each iteration, the node perturbs the output variable Πx,t(k) or

Πy,s(k) respectively in order to obtain Π∗x,t(k) or Π∗y,s(k). The proposed scheme is fur-

ther illustrated in Fig. 5.1. It is important to note that the information sets at each node,

i.e., Dp containing sensitive utility parameters, remains untouched and is not perturbed.

For convenience, the differentially private distributed OT algorithm based on the out-

put variable perturbation is summarized in Algorithm 4. We further have the following

theorem which guarantees the privacy-preserving property of Algorithm 4.

Theorem 3. The proposed Algorithm 4 is βp-differentially private with βp(k) for node

p at iteration k. Let Q(Π∗x,t |Dx) and Q(Π∗x,t |D′x) be the probability density functions

for Π∗x,t given the information sets Dx and D′x such that H(Dx,D′x) = 1. The ratio of

Figure 5.1: Illustration of the differentially private distributed OT scheme. The infor-
mation exchanged between nodes is susceptible to be intercepted by the adversary (e.g.,
by eavesdropping attack to the wireless channel). Hence, an appropriate random noise
is added to the outputs at each update step.
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Algorithm 4 Differentially Private Distributed OT Algorithm With Output Variable Per-
turbation

1: for k = 0,1,2, ... do
2: for x ∈Xy do
3: Compute Πx,t(k+1) using (5.13)
4: Compute Π∗x,t(k+1) using (5.14)
5: end for
6: for y ∈ Yx do
7: Compute Πy,s(k+1) using (5.15)
8: Compute Π∗y,s(k+1) using (5.16)
9: end for

10: Compute π∗xy(k+1) using (5.17), for all {x,y} ∈ E
11: Compute αxy(k+1) using (5.18), for all {x,y} ∈ E
12: end for
13: return π∗xy(k+1), for all {x,y} ∈ E

probability density of Π∗x,t is bounded:

Q(Π∗x,t(k)|Dx)

Q(Π∗x,t(k)|D′x)
≤ eβx(k). (5.19)

It follows similarly for the probability density of Π∗y,s, i.e.,

Q(Π∗y,s(k)|Dy)

Q(Π∗y,s(k)|D′y)
≤ eβy(k). (5.20)

Note that (5.19) and (5.20) directly imply
Pr(Π∗x,t(k)|Dx)

Pr(Π∗x,t(k)|D′x)
≤ eβx(k) and

Pr(Π∗y,s(k)|Dy)

Pr(Π∗y,s(k)|D′y)
≤ eβy(k),

respectively.

Proof. See Appendix C.

In summary, the proposed Algorithm 4 guarantees the privacy of all participating

nodes during their decision sharing.
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5.3 Case Studies

In this section, we corroborate the effectiveness of the developed differentially pri-

vate algorithm and show how the added privacy affects the transport plan and the ef-

ficiency. We first study a network with two source nodes and five target nodes where

every source is connected to every target. The target nodes are labeled from 1 to 5

and the source nodes have indices 6 and 7. The upper bounds for the target nodes are

p̄1 = 2, p̄2 = 3, p̄3 = 4, p̄4 = 3, p̄5 = 2, q̄6 = 4 and q̄7 = 4 for the source nodes. The

lower bound for all nodes are set to 0. Additionally, we consider linear utility functions

txy(πxy) = δxyπxy, and sxy(πxy) = γxyπxy,∀{x,y} ∈ E . The corresponding parameters in

the functions are selected as follows:

[δxy]x∈X ,y∈Y =

0.25 1.5 0.25 1.5 0.75

0.75 0.75 1.75 0.25 0.25

 ,

[γxy]x∈X ,y∈Y =

0.5 0.3 1.5 0.5 0.8

0.2 0.5 0.6 0.4 1.5

 .
In the following study, we investigate the impact of βp which captures the level of pri-

vacy. According to the definition, a smaller βp yields a higher level privacy. For small

βp, we choose β1 = 0.2, β2 = 0.1, β3 = 0.3, β4 = 0.1, β5 = 0.2, β6 = 0.1, and β7 = 0.1.

For larger values of βp, we increase these numbers 1,000-fold. Additionally, we define

η = 1 and ρ = 2.

We leverage the developed algorithms, Algorithms 3 and 4, to compute the transport

plans. The results are shown in Fig. 5.2. First, in Fig. 5.2(a), the trajectory of transport

plan yielded by the differentially private algorithm oscillates around some point. The
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(a) Social utility (b) Transport plan

(c) Privacy and transport efficiency trade-off

Figure 5.2: The first graph (a) shows the performance of the proposed algorithms. (b)
depicts the transport plans designed using centralized algorithm by the central planner
(CP) and using the differentially private (DP) algorithm. (c) shows an increase of the
privacy level (smaller βp) decreases the transport utility, reflecting the trade-off between
privacy and transport efficiency.

oscillation is because of the random noise added to the decision at each output perturba-

tion step. We can also see that when βp is small, the resulting social utility (i.e., transport

efficiency), which is an aggregation of the utilities of all participating nodes, is relatively

small. In comparison, when βp is large, the social utility is close to the one returned by

Algorithm 3 where differential privacy is not incorporated, and thus the transport so-
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lution is efficient. Fig. 5.2(c) further shows this phenomenon and reveals the inherent

trade-off between the amount of added privacy and the transport efficiency. Fig. 5.2(b)

illustrates how the privacy factor affects the overall transport plan. The decreased opti-

mality due to the privacy promotion indicates that the resource allocation is no longer

taking full advantage of how much source nodes can provide or how much target nodes

can request. For example, target node 3 can request at most 4 units of resources, and

does so when privacy is not added to the algorithm. When privacy is concerned, it only

requests 2.5 units of resources. This study shows how private and efficient transport

scheme can be achieved.

5.4 Conclusion

This chapter developed a differentially private distributed optimal transport algo-

rithm which has a theoretical guarantee of achieved privacy. The algorithm protects the

sensitive information at each node by perturbing the output of the transport schemes

shared between connected nodes during updates. Under the designed mechanism, even

if the transport decision is intercepted during its transmission, the adversary still cannot

discover the underlying sensitive information used in the transport strategy design. The

privacy level for each node can be determined appropriately by considering its trade-

off with the resulting transport efficiency. Future work includes extending the current

model-based distributed optimal transport framework to data-driven learning-based op-

timal transport while considering data privacy in the learning process.



Chapter 6

Conclusion

This thesis has laid a foundation for fair, secure, and privacy-preserving distributed

discrete optimal transport design. When a fairness metric is incorporated, resources are

distributed more evenly across the target nodes. The fairness is explicitly promoted in

the algorithm, through negotiations between each pair of source and target. Throughout

the negotiation steps, the sources maximize their revenue but need to consider the fair-

ness requests. Similarly, the targets optimize the fairness but should take into account

the efficiency of resource allocation as well. The algorithm terminates when the two par-

ties reach a consensus. Using a game-theoretic approach, the second part of this thesis

developed secure and resilient transport strategies to counteract the adversarial attacks

to a set of source nodes in the resource allocation planning. The adversarial behav-

ior is specifically acknowledged in the developed best-response type of algorithm when

each connected pair of target and source nodes negotiate on the their proposed transport

plans, and the compromised node’s actions are inherently taken into account in the final

allocation schemes. The third part of the thesis proposed a differential privacy based

mechanism that perturbs information published over the network in the distributed OT

algorithm. Under the designed mechanism, even if the transport decision is intercepted

during its transmission, the adversary still cannot discover the underlying sensitive in-
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formation used in the transport strategy design. The privacy level for each node can be

determined appropriately by considering its trade-off with the resulting transport effi-

ciency.

Optimal transport has become increasingly more popular over recent years because

of its applications to fields such as machine learning, image processing, computer graph-

ics, economics and more. Its popularity will continue to grow and thus the need for

incorporated fairness, security, and privacy in the algorithm such as the ones proposed

and tested in this thesis will be increasingly in demand.



Appendix A

Proof of Proposition 1, 4 and 6

Proof. Let ~x = [~ΠT
x,t ,~Π

T ]T , ~y = [~ΠT ,~ΠT
y,s]

T , and α = [{αxy,t}T ,{αxy,s}T ]T , where~ de-

notes the vectorization operator. We note that these vectors are all 2N×1 where N is the

number of connections between targets and sources. This is also the size of E . Now we

can write the constraints in matrix form such that A~x=~y where A= [I,0,I,0]. Here I and

0 denote the identity and zero matrices respectively, both of which are N×N. Next, we

note that~x∈F~x,t and~y∈F~y,s, where F~x,t = {~x|πxy,t ≥ 0, px ≤∑y∈Yx πxy,t ≤ p̄x,{x,y} ∈

E }, F~y,s := {~y|πxy,s ≥ 0,qy ≤ ∑x∈Xy πxy,s ≤ q̄y,xy ∈ E }. In turn we can solve the mini-

mization in (3.5) with the iterations: 1)~x(k+1)∈ argmin~x∈Fx,t L(~x,~y(k),α(k)); 2)~y(k+

1)∈ argmin~y∈Fy,s L(~x(k),~y,α(k)); 3) α(k+1) = α(k)+η(A~x(k+1)−~y(k+1)), whose

convergence is proved [5]. Because we have no coupling among Πx,t ,Πy,s,πxy,αxy,t , and

αxy,s the above iterations can be decomposed to equations (3.7)-(3.11)(or (4.11)-(4.16),

(5.2)-(5.6)).
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Appendix B

Proof of Proposition 2, 5 and 7

Proof. Note that (3.9), (4.13) and (5.4) are equivalent. As are (3.10), (4.14), (5.5), and

(3.11), (4.15), (5.6), and (3.15), (4.20), (5.10). Thus they can be substituted respectively.

As (3.9) is strictly concave, we can solve it by first-order condition:

πxy(k+1) =
1

2η
(αxy,t(k)−αxy,s(k))+

1
2
(πxy,t(k+1)+πxy,s(k+1)).

By substituting the above equation into (3.10) and (3.11) we get:

αxy,t(k+1) =
1
2
(αxy,t(k)+αxy,s(k))+

η

2
(πxy,t(k+1)−πxy,s(k+1)),

αxy,s(k+1) =
1
2
(αxy,t(k)+αxy,s(k))+

η

2
(πxy,t(k+1)−πxy,s(k+1)).

We can see that αxy,t = αxy,s during each update. Hence, πxy(k + 1) can be further

simplified as πxy(k + 1) = 1
2(πxy,t(k + 1) + πxy,s(k + 1)). In addition, we can achieve

(3.10) and (3.11) from αxy,t = αxy,s = αxy represented in (3.15).
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Appendix C

Proof of Theorem 3

Proof. We first show the bounded ratio in (5.19). We have
Q(Π∗x,t(k)|Dx)

Q(Π∗x,t(k)|D′x)
= Fx(εx(k))

Fx(ε ′x(k))
=

e−ξx(k)||εx(k)||

e−ξx(k)||ε ′x(k)||
. Our goal is to find a ξx(k) such that the following inequality holds true:

ξx(k)(||εx(k)|| − ||ε ′x(k)||) ≤ βp(k). Let W = argminΠx,t fx(k|Dx) and the associated

W ′ = argminΠx,t fx(k|D′x), where fx(k) is the objective function for the target node

x ∈X at iteration k, shown in (5.13). Also, let g and h be defined at each node x ∈X

such that g(Π∗x,t(k)) = fx(k|Dx) and h(Π∗x,t(k)) = fx(k|D′x)− fx(k|Dx).

Therefore, h(Π∗x,t(k)) = −t̃xy(πxy,t)+ txy(πxy,t), where t̃xy refers to the altered utility

function due to the difference between D′x and Dx. Assumption 1 implies that fx(k|Dp)=

g(Π∗x,t(k)) and fx(k|D′x) = g(Π∗x,t(k)) + h(Π∗x,t(k)) are both convex. We differentiate

h(Π∗x,t(k)) with respect to Π∗x,t(k) and get:

∇h(Π∗x,t(k)) =−t̃ ′xy(πxy,t)+ t ′xy(πxy,t).

Assumption 3 further implies that 0 ≤ t ′xy ≤ ρ . Thus, ||∇h(Π∗x,t)|| ≤ ρ . From the def-

initions of W and W ′, we have ∇g(W ) = ∇g(W ′) +∇h(W ′) = 0. Based on Lemma

14 in [30] and knowing that g(·) is η-strongly convex, the following inequality holds:

〈∇g(W )− g(W ′),W −W ′〉 ≥ η ||W −W ′||2. Thus, by the Cauchy-Schwartz inequality,
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we obtain

||W −W ′|| · ||∇h(W ′)|| ≥ (W −W ′)T
∇h(W ′) =

〈∇g(W )−g(W ′),W −W ′〉 ≥ η ||W −W ′||2.

Dividing both sides by η ||W −W ′|| yields ||W −W ′|| ≤ 1
η
||∇h(W ′)|| ≤ ρ

η
. From (5.13),

we have ||W −W ′||= ||εx(k)− ε ′x(k)|| ≤ 1
η
||∇h(W ′)||. Thus, we obtain

ξx(k)(||εx(k)||− ||ε ′x(k)||)≤ ξx(k)(||εx(k)− ε
′
x(k)||)≤

ρ

η
ξx(k).

Therefore, by choosing ξx(k) =
η

ρ
βp(k), the inequality ξx(k)(||εx(k)− ε ′x(k)||) ≤ βp(k)

holds. Thus, the output variable perturbation is βp-differentially private for target node

x ∈X . The proof follows identically for the perturbed output variable Π∗y,s(k) at the

source node y ∈ Y and hence omitted.
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Abstract

Jason Hughes

An Algorithmic Foundation for Fair, Secure, and Differentially Private

Distributed Discrete Optimal Transport

Thesis Advised by Juntao Chen, Ph.D.

Optimal transport (OT) is a framework that can be used to facilitate the opti-

mal allocation of resources in a network with multiple source and target nodes. To ease

the computational complexity encountered by large-scale networks with a massive num-

ber of nodes, a distributed algorithm, based on the alternating direction method of mul-

tipliers (ADMM), is developed for computing the optimal transport strategy. However

such a formulation lacks fairness, robustness and privacy considerations. Thus, there is

an imperative need to develop distributed OT algorithms that allow for a more fair allo-

cation of resources, accounts for possible deception attacks to the transport nodes and

keeps nodes’ sensitive information private during transport strategy updates. To achieve

this goal, this thesis first incorporates a fairness metric into the objective function of the

discrete OT problem and then leverages ADMM to develop a distributed algorithm. It

then establishes a game-theoretic approach to counteract a deception attack where an

attacker aims to compromise the transport plan. This formulation results in a min-max

problem, and it can be solved in a distributed fashion to obtain a secure and resilient

transport scheme. The distributed algorithms formed require communications on strate-

gies between nodes during updates, which could potentially be intercepted and leveraged

by an adversary, leading to private information being leaked. By incorporating differen-

tial privacy, the developed distributed algorithm guarantees the privacy of the sensitive

information at each source and target node. All of the proposed algorithms are corrob-



orated through case studies. The developed algorithmic foundation for fair, secure, and

privacy-preserving discrete OT has broad applications to economics, machine learning

and more.
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