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Abstract— This paper considers the security investment prob-
lem over a network in which the resource owners aim to allocate
their constrained security resources to heterogeneous targets
strategically. Investing in each target makes it less vulnerable,
and thus lowering its probability of a successful attack. How-
ever, humans tend to perceive such probabilities inaccurately
yielding bounded rational behaviors; a phenomenon frequently
observed in their decision-making when facing uncertainties.
We capture this human nature through the lens of cumulative
prospect theory and establish a behavioral resource allocation
framework to account for the human’s misperception in security
investment. We analyze how this misperception behavior affects
the resource allocation plan by comparing it with the accurate
perception counterpart. The network can become highly com-
plex with a large number of participating agents. To this end,
we further develop a fully distributed algorithm to compute the
behavioral security investment strategy efficiently. Finally, we
corroborate our results and illustrate the impacts of human’s
bounded rationality on the resource allocation scheme using
cases studies.

I. INTRODUCTION

An efficient allocation of limited security resources to
protect targeted assets from malicious attacks is a criti-
cal problem faced by security professionals. This problem
becomes increasingly challenging as the modern systems
adopted in our society become more complex. For exam-
ple, the societal cyber-physical systems, such as industrial
control systems and power grids, consist of heterogeneous
components including sensors, controllers, and actuators,
which are required to be jointly secured to achieve a desired
performance. Thus, it is important for the system operator to
allocate the available security resources strategically to en-
hance the holistic security. Previous studies have investigated
how a centralized system operator can maximally reduce
the vulnerability of assets from adversaries through security
investment [1], [2]. However, such a centralized paradigm,
i.e., using a single-source model, is insufficient to capture
the emerging scenarios where multiple resource owners'
participate in securing the targets collaboratively. To this end,
this paper aims to develop a framework and investigate the
security investment problem over a network with multiple
sources (security resource investors) and a variety of targets
(valuable assets to be protected).

To develop an effective security investment scheme, it is
necessary to understand how the risks of targets change over
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I'The resource owner also refers to the system operator/planner, and they
are used interchangeably in the paper.

the investment strategy. A larger security investment amount
will lower the probability of a successful attack. However,
human’s perception of such probabilistic events is subjective,
a commonly observed behavior when facing uncertainties.
Psychological studies have shown that humans often misper-
ceive probabilities on gains and losses by over-weighting low
probabilities and under-weighting high probabilities which
lead to bounded rational behavior, a subject receiving signif-
icant attention in prospect theory [3], [4]. Such behavioral
misperception plays an essential role in the focused security
investment problem where the resource owners need to
evaluate the likelihood of successful compromise of the
targets under a given resource allocation scheme. To this
end, we incorporate this bounded rational consideration into
our model by developing a new behavioral decision-making
framework for security investment over networks. Under this
paradigm, the resource owner perceives the target having
a relatively low chance of being compromised as more
vulnerable than it is, and a target with a high probability
of being attacked as less vulnerable than it is. We analyze
the impact of attack success misperception on the optimal
resource allocation strategy and identify that the bounded
rational operator will prefer more to secure those targets
with higher values. In other words, the investors tend to pay
more attention to higher-valued assets as they become more
behavioral, yielding a discriminative distribution scheme
comparing with the one without behavioral consideration.
Additionally, when more and more participating
agents/nodes (resource owners and targets) are introduced
into the network, the computational complexity of the
resource allocation problem increases drastically [5].
Solving the security investment problem with a massive
number of networked sources and targets in a centralized
manner may be impractical or extremely computationally
expensive. In addition, the centralized approach requires the
planner to have complete information on the source and
target agents, including their utility parameters, supply and
demand upper bounds, degree of misperception on attack
success, and value of targets. Thus, it does not preserve
a high level of privacy for participants. To this end, we
propose a distributed algorithm based on the alternating
direction method of multipliers (ADMM) [6], where the
central resource transport planner is not needed and each
node solves its own simpler optimization problem and
communicates its decisions with the connected nodes in
the network. Each pair of source and target nodes will
then negotiate to reach a consensus on how many security



resources should be transported. The proposed distributed
algorithm converges to the same optimal solution obtained
under the centralized optimization paradigm.

The contributions of this paper are summarized as follows:

1) We develop a bounded rational security investment
framework over a network. The model captures the
decision-makers’ misperception of security resources’
effectiveness on protecting the targets, and it facilitates
the analysis of behavioral impacts on the resource
allocation plan.

2) We discover a sequential water-filling nature of the
optimal security resource allocation over the targets
and identify that the transport planners become more
discriminative by investing in a smaller set of higher-
valued targets as they tend to be more behavioral.

3) We further develop a distributed algorithm based on
ADMM to compute the optimal resource investment
strategy for large-scale networks. We also corroborate
our algorithm and analytical results using case studies.

Related Works: Optimal security investment for defending
assets has been studied extensively in literature [7]-[10].
Previous studies have also considered the behavioral impacts
on security investment. For example, the authors in [11]
have studied the interplay between the strategic defender
and the bounded rational adversary through a game-theoretic
framework. [12] has investigated the optimal investment
strategies under a misperceived security risk model based
on prospect theory, in which the authors have focused on
a single decision maker investing on heterogeneous assets.
Our work pays attention to the resource transport in a multi-
source multi-target framework. Prospect theory has also
been used to guide the optimal resource allocation/decision-
making in various applications, including water infrastruc-
tures [13], communication networks [14], and the Internet
of things [15]. Our work is also related to the decision-
making of resource allocation over large-scale networks,
in which efficient algorithms for computing the optimal
schemes have been proposed in different contexts, including
in consideration of efficiency [5], [16], fairness [17], and
security and resiliency [18], [19].

The rest of this paper is organized as follows. In Sec-
tion II, we formulate the security investment problem over
a network that considers human misperception on attack
success rate. We characterize the optimal security investment
strategy and analyze how the behavioral consideration affects
such solutions in Sections III and IV. We further develop
a distributed algorithm to compute the behavioral security
investment strategy in Section V and corroborate our findings
in Section VI.

II. PROBLEM FORMULATION
In this section, we establish a framework for security
investment over a network with behavioral participants.
A. Security Resource Transport Network

In a network, we denote by 2" :={1,...,| 2|} the set of
destinations/targets that receive the security resources, and

W ={1,...,|%|} the set of origins/sources that distribute
security resources to the targets. Specifically, each source
node y € ¢ is connected to a number of target nodes
denoted by %, representing that y has choices in allocating
its resources to a specific group of destinations Z, in the
network. Similarly, it is possible that each target node x € 2~
receives resources from multiple source nodes, and this set
of suppliers to node x is denoted by #;. Note that .2, Vy
and %, Vx are nonempty. It is straightforward to see that the
security resources are transported over a bipartite network,
where one side of the network consists of all source nodes
and the other includes all destination nodes. This bipartite
graph may not be complete due to constrained matching
policies between participants. For convenience, we denote
by & the set including all feasible transport paths in the
network, ie., & :={(x,y)|x € 25,y € #}. Note that & also
refers to the set of all edges in the established bipartite graph
for security resource transportation.

We next denote by m, € R, the amount of security
resources transported from the origin node y € % to the
destination node x € 2", where R is the set of nonnegative
real numbers. Let IT := {7y }.c2, e be the designed
resource transport plan. Furthermore, the security resources
at each source node y € % is upper bounded by g, € R,
i.e., erggy Ty < 67);.

B. Bounded Rational Security Investment

Each target node in the network faces threats and could be
compromised by an attacker. If target node x € 2" is attacked,
the induced loss is U, > 0. The attacker’s probability of
successfully compromising the target node is related to the
amount of security resources received. For each target node
x € %, defined by p, : R‘f/"‘ — [0,1] a function that maps
the received security resources Il to a successful attack
probability. It is natural to see that such probability should
be related to the aggregated resource received by node x
captured by Y coy Tyy. Thus, with a slightly abuse of nota-
tion, py(Il) can be expressed by py(¥ e, 7ry), where the
later one shows more explicitly the relationship between the
successful attack probability and the total received resources
at node x € 2.

Each target node x € 2" minimizes its cost U,p,(IL;). To
this end, the central planner aims to minimize the following
aggregated loss L(II) at all targets under attacks:

L(H) = Z prx(nx)- (D
xeZ

It has been shown that humans tend to misperceive
probabilities by over-weighing low probabilities and under-
weighing high probabilities during decision-making under
uncertainties. For a true probability p € [0,1], humans will
perceive it as w(p) € [0,1], where w is a probability weight-
ing function. One such commonly used weighting function

is given by [20]

w(p) = exp(—(—log(p))’), p€[0,1], 2)

where y € (0,1] is a parameter capturing the degree of
misperception. When 7y is closer to 0, it leads to a larger



distortion of the probability function p. In comparison,
when y =1, w(p) = p, indicating there is no probability
misperception.

Under the perceived probability, the target node x’s cost
function becomes Uyw (px(I1y)). Thus, the cost function for
the transport planner under the perceived attack probability
is

= Z Urw(px(IL)). 3)

xe&

The security resource allocation strategies with bounded
rational behavioral consideration can be obtained by solving
the following optimization problem:

min Z Uww(px(I1,))

n xeZ

st.0< Y my<g, Ve, (4
x€Zy

Ty >0, V{x,y} € &.

(OP—A):

Note that (OP-A) is solved for a distribution of resources
across the source nodes at a given time. If the amount of re-
sources at each node changes, a new optimal strategy can be
obtained by solving (OP-A) repeatedly in a moving horizon
fashion. Extending (OP-A) to dynamic resource allocation
over a period a time is possible and left as subsequent work.

III. PRELIMINARY ANALYSIS

The successful attack probability function p, should cap-
ture the fact that a larger security investment lowers the
likelihood of attack. In addition, the marginal benefit of
security resource decreases for each target node. To this end,
we have the following assumption.

Assumption 1. The successful attack probability func-
tion py(Ily) satisfies the following: 1) py(ILy) € [0,1] with
limj¢)|, 5o P2(§) = O, where || -||1 denotes the 1 norm,
and is twice differentiable, 2) p,(Ily) is strictly monotonic
decreasing and log-convex with respect to Ty, for y € %,
and 3) g T /px is bounded with respect to Ty, fory € %..

There are a number of functions of interest that satisfy the
properties in Assumption 1. For example,

Z Ty — rx , (5

ye¥

px(Iy) = exp(—

where ry, > 0 represents the existing security investment at
node x before resource transport.

As another example, p,(IL) = m, where r, > 1
has a similar meaning as in the previous case. Both examples
indicate that the security resources can effectively decrease
the attack likelihood.

Lemma 1. Under Assumption 1, the perceived probability
of successful attack at node x, w(px(Ily)), is strictly convex
inmy, Vxe Z', ye %.

Proof. See Appendix A. |

IV. ANALYSIS OF BOUNDED RATIONAL SECURITY
INVESTMENT STRATEGIES

This section characterizes the bounded rational security
investment strategies and analyzes the impacts of behavioral
considerations on such decision-making outcomes.

A. Security Resource Allocation Preferences

We first have the following assumption to facilitates the
analysis.

Assumption 2. Assume that the values of induced loss due
to successful attack are ordered as follows: Uy > U, > ... >
U| 2| > 0. Furthermore, each target node admits a same
successful attack probability function, i.e., py, Vx € 2, share
a same form.

We next have the following result on the marginal cost
associated with the target nodes.

Lemma 2. The following inequality holds for each pair of
target nodes i € X and j € X with i < j,

g, il z))<U13W(1’1( )y €N (6)
om;y ITjy

And the marginal cost U; M is negative and continu-
ously increasing to 0 in Ty, Vz eZ.

Proof. First, we have, Vx € 2 and Vy € %,

Iw(px(TLy))

Iy = X'Y(_log(PX(HX)))(yil)

. ap;;fylx)/px(nx) : W(Px(nx))'

Based on Assumption 1, % is negative. In addition,
—log(px(I1y)), px(IL;) and w(p,(I1,)) are all positive. Thus,

Ux
(7

Ux%gh)) < 0. Lemma 1 shows that %(%ﬁ‘m») >0,
indicating that the marginal cost is monotonically
increasing. In  addition,  limym,, e %{f‘m)‘

. — d X Hr
Biomy 1, e [ UL (— 0 (pe(T10))) 7 w(pu(TL) | | 25002 /(11
From Assumption 1, we know that as p,(Il;) = O and thus

W(px(Hx)) — 0 and —log(px(Ilx)) — e as_|[TIL | — co.
. ow(p (Hx))‘ -0

Oy :
Flnally, to show the 1nequahty between the marginals, we

note that based on Assumption 2, U; > U; and thus

Ipi(IL;)
le/[’i(ni)
<uj(- log<p<n,~>>>“w<p<n,~>>‘9"g$f /pimm),

VI, € R vx € 2 which yields (6) because 25 s
Jy
negative. ]

Yw(p(IT;))

The following proposition characterizes the total amount
of security resources received by the target nodes from
sources under some general assumptions.




Proposition 1. Under Assumption 2 and a complete resource
transport network, the optimal strategy {I1f}ica satisﬁes
the following inequality ||ITi||1 > ||IT5][1 > ... > ||]ITf,
and the Iy norm ||T|[1 = Ly Ty is the total amount of
security resources received by the target node x € Z .

Proof. As each source can transfer resources to every target
and the qualities of resources are the same supplied by all
source nodes, it is equivalent to aggregate all the source
nodes as a single super node that has a capacity Y ,cs g,
managed by a central planner. Thus, the transport network
can be seen consisting of a single source connected to a set
of targets, i.e., # ={1}, % =%, and II, = my;, Vx € Z .
Based on the KKT condition, for each pair of target nodes
ie X and j € 2 receiving nonzero security resources

from the source node, we have Ui%\m =
U J%Mﬂ =+ Assumptions 1 aand 2 indicate
that  yUi(~log(pi(m;)))"'w(pi(m)) ’Sn, /pi(my) =
* d _( ) .
YU (—Tog(p; ()~ wlps (m51) et pj (), which
yields '
apt( ) 1
—1 i ﬂ:l'* i
(~Tog(pu(m )" wlp(mi) G0
U; apj(my) 1
= —=(—log(p;(x; _—
Ul( g(pj( jl))) (pJ( )) 87511 p/(ﬂjl)
Ipj(m;) 1
> (—log(p;(m)))Y w(pi(ns)) ———L= —.
(~loglpy(—)" s m5) = s

The inequality in the last step above is due to U; < U; for
j > i and the negative marginal cost of target node on the
received security resources. Based on Lemma 2, the marginal
cost is continuously increasing. Thus, we can conclude 77 >
7, where 7 is the total amount of resources received by
target node i. Equivalently speaking, target node i receives
more security resources than target node j at the optimal

solution, for i < j € 2. |

Remark: Proposition 1 indicates that, under some quite
general conditions, target node i (higher-valued) receives
more resources than target node j (lower-valued) under the
optimal allocation plan, Vi < j € Z". This result is consistent
with the objective of the system planner in minimizing the
aggregated expected loss of assets.

B. Sequential Water-Filling of Security Investment

The transport network is still considered to be complete.
Thus, it is equivalent to combine all source nodes and regard
them as a super source node with capacity Y cs gy. For
convenience, we denote by 7; the total amount of resources
that target node i received from the super source node, i.e.,
i = Y.yew Ty in the original framework. With a slight abuse
of notation, p, can be seen as a single-variable function on
;. For all target nodes i € 2" and j € 2 with i < j, we

define /" as a quantity that satisfies
ow(pi(f; ow(p(%;
U; W(Pi( 1)) —U; W(P{( 7)) (8)
8717,- s aﬂ',' ~
=T; : ;=0

Proposition 2. Under Assumption 2 and a complete trans-
port network, the resources received by target node j from
the super source node, Tj, will be nonzero at the optimal
solution if and only if Y co Gy > ):lj 17‘61 , where 7'L'] is
defined in (8).

Proof. Suppose that &% > 0 for some target node j. Also

suppose by contradlctlon that Y co gy < lel 77"1] . Then,
dm e {1,...,j— 1} such that 7, < ). This indicates that
it is infeasible to allocate A, or more resources to node m
without exceeding the upper bound. By definition of 7",

o, 2o )| (o))
OTtm on =Ty O g0

Cu )|

o =7

which yields a contradiction, since the marginals must coin-
cide at Fhe optimal solution. Thus, 77 > 0 leads to ¥,co gy >
Z{;ll /" under the optimal resource allocation.

To prove the other direction, we first suppose that
Yyew dy > Z{;ll 7 and suppose by contradiction 7%; = 0.

Then we have @ = 0,Vk > j, and thus Y, ;1% =
Yyew @y and Ji € {1,...,j— 1} such that &; > &/". A suffi-

ciently small amount of resource, € € R is transferred from
target i to j which will lead to a net cost reduction in (OP-
A), and thus the resource allocation is no longer optimal.
Starting with non-zero resource allocation to the target nodes
{1,...,j—1}, the total cost is ¥, 5 Uyw(px(7)). From target
i that has 7} = ||IT}||; > &/", remove a sufficiently small
amount of resource € and add a resource amount of € to
target j. Denote the modified resource transport plan as (€.
The total cost after perturbation becomes

L(n®)) = Z\{ }UzW(Pz(ﬁé‘))+UiW(Pi(ﬁi*€))
zeZ\{i,j

+Ujw(p;(€)).

We next define g(e) = Uw(pi(%; — €)) + Ujw(p,(€)).
Then, L(7*) = Yee o\ (i) U (p:(f)) + 8(0), L(z®)) =
Lee\(ijy Uew(po(T)) + g(e). 1f g(e) < g(0), then
L(x®) < L(#*), which yields a positive net cost
reduction, meaning that the resource allocation strategy after
perturbation is worse off. It is clear that

dg _ _, owpi(m)) Iw(p;(m;))

de ' R o

+U;

ﬂi:ﬁifé'

7Cj:8
Based on 7 > ﬁlj * and Lemma 2,

U:
L o7;

>Uj

=0

Thus, limg_,g % is negative, indicating that g(€) is decreas-
ing for a sufficiently small €. Therefore, we obtain L(x(®)) <
L(#*) which is a contradiction. |

Remark: Proposition 2 implies that the super source node
first allocates 7 ~2* security resources to target node 1, and



then starts to transfer resources to both target nodes 1 and 2
while maintaining a same marginal cost until reaching frf*
and 73*, respectively. Afterward, in addition to target nodes
1 and 2, target node 3 starts to receive resources, and the
marginal costs at all nodes are kept the same during security
resource investment. The resource allocation scheme will
follow this fashion until all resources are transferred. The
above discussion leads to sequential water-filling of security
resource transport over networks.

As the original transport network includes multiple source
nodes, we need to determine the strategy for each of them.
The above discussion indicates that the optimal resource
allocation plan can be obtained sequentially, i.e., each source
node completes allocating its security resources to the targets
in sequential order. Specifically, source node 1 will first
transfer its resource to target node 1. If §; < 7?12*, then the
next source nodes (node 2, 3, etc) will continue allocate
resource to target node 1 until it receives &> amount of
resources. If gy > ﬁ?f*, then source node 1 first allocates
77712* amount of resources to the target node 1, and then start
transferring the remaining resources to both targets 1 and 2
while maintaining a same marginal cost at both nodes. After
source node 1 completes its resource transport, source node
2 starts to transfer its resources to the appropriate targets
in a similar manner. This process terminates until all source
nodes finish their resource allocation to the targets.

C. Behavioral Impacts on Security Resource Allocation

The impact of incorporating the behavioral element to
probability perception is captured by the parameter 7.
Clearly, there is no behavioral consideration when y =1, and
the probabilities are perceived as their actual values. When
v € (0,1), we have the following result on the behavioral
impacts on the resource allocation plan.

Proposition 3. Under Assumptions I and 2, p,(0) < é Vx €
X', and a complete transport network, d ﬁ?lj */dy < 0fori< j,
Vi,j € 2, with & defined in (8).

Proof. Based on (2) and (8), we have

ul-y<flog<pi<ﬁf*>>><y—1>w<pi<ﬁ;"*>>alggi)

— U 7(— log(p;(0))) 7 Dw(p;(0)) 22T

Based on (9), we can characterize the sensitivity of the
amount of security resources transported to each target over
the behavioral parameter y. Taking log of each side of (9)
and differentiating with respect to 7y yield

dﬁi‘i* _ ((710g(pi(ﬁii*)))y* l)log(—log(pi(ﬁif*)))
dy Al
’ (10)
_ ((=1og(p;(0)))” — 1)log(—log(p,(0)))
Al ’

1

—_

where A/ = (y—1—y(—log(pi(&/")))7) &% | . L
! ﬁi:ﬁil* /71(77:1' )

2

S
IT; ‘ni:n-f

L Under the

70,20

| eni(#)
assumption that p;(0) < ! and p,(ﬁ:l]*) < p;(0) for
" > 0, we have —log(p;(#/")) > —log(p;(0)) > 1
and thus log(—log(pi(&/"))) > log(—log(p;(0))) > 0 and
(—log(p(£7)))7 — 1 > (~log(p;(0)))7 — 1. Hence, the
numerator of (10) is positive. From Assumption 1, we

Ipi(%)
;

log(pi(7/")) +

- < 0 and because p;(f;) is log-convex,
_in 92p; j%izﬁ"j*
Pi(ﬂ'-]*) pi(%)

1

pre )2. Thus, the denom-

inator of (10) negative, which yields dﬁfij */dy < 0. ]

have 5

Ipi(%)

R=r" = ( a7

’ﬁ,-:ﬁt{*

Remark: The above analysis, together with Proposition 1
indicate that when the behavioral misperception on the attack
success probability is considered, the sources will supply
security resources to fewer target nodes than the optimal
strategy obtained under the non-behavioral counterpart. In
other words, the behavioral security resource owners prefer
to secure higher-valued assets while paying less attention
to those relatively lower-valued targets, and it leads to a
discriminative resource allocation scheme comparing with
the one developed under fully rational scenario.

V. DISTRIBUTED ALGORITHM FOR BOUNDED RATIONAL
SECURITY INVESTMENT

This section aims to develop a distribution computational
scheme to obtain the behavioral security investment scheme.
In the established framework, the objective function can
also incorporate the preferences of the source nodes in the
security resource transport design in addition to the cost of
the target nodes. The utility function of source node y on
transferring 7, security resources to target node x is denoted
by sy : Ry — R. In addition, to balance the security resource
allocation, the planner considers an upper bound of each
target node x € 4" on the received security resources from
connected sources, captured by p, € Ry, i.e., Yoy Ty < P
To this end, the system planner aims to address:
(OP—B): Hll]in Z Uww(px(Ix)) — Z Z TySay (Tory)
xeZ YEX xeZy
st. 0< Z Ty < px, VXX,
ey
0< Z Ty < Gy, VY EY,
xeZy
Ty >0, V{x,y} €&,

where 7, € R, is a positive weighting factor balancing the
loss of the targets and the utility of the sources under a given
security allocation strategy. It is straightforward to observe
that as 7, — 0, Vy, the solution to (OP-B) will converge to
the one of (OP-A), given that the targets have no constraint
on the maximum received security resources.

As the resource transport network becomes complex with
a large number of participating nodes, a centralized scheme
to compute the optimal solution to (OP-B) can be compu-
tationally expensive. In addition, the centralized optimiza-
tion paradigm requires the planner to collect heterogeneous



information from all source and target nodes, including
their utility parameters, supply and demand upper bounds,
degree of misperception on attack success, and value of
targets, which does not preserve a desirable level of privacy.
Due to the above two concerns, it is necessary to devise
a distributed and privacy-preserving scheme to obtain the
behavioral resource allocation strategy over a large-scale
network.

To facilitate the development of such an algorithm, we
first introduce two ancillary variables n)’cy and n;y. The
superscripts ¢ and s indicate that the corresponding parameter
belongs to a target and source node, respectively. We then set
ﬂ)tcy and 7, = Ty, indicating that the solutions proposed
by the targets and sources are consistent. This reformulation
facilitates the design of a distributed algorithm which allows
us to iterate to obtain the optimal strategy. To this end, the
reformulated problem is presented as follows:

ZUwpr' Z ZT}SX) )

YEX xeZy
s.t. 717xy =My, V{x,y} €&,
Ty = Ty, V{x,y} €&,

Ty =

min
eF! Ie.Fs, I,

(1)

where IT' := { y}xeiﬂ )E’Ja { y}xeé‘l”ye?/u F =
{H’|77: >0p <Zy€”% <px, {xy}eg} and Z* =
{HS‘ES >0 q < erulf‘ Xy = va {)C y} € g}

We resort o alternating direction method of multipliers
(ADMM) [6] to develop a distributed computational algo-
rithm. First, let oy, and Ot)iy be the Lagrangian multipliers
associated with the constraint 7y, = 7, and n'ny = Thy,
respectively. The Lagrangian function associated with the
optimization problem (11) can then be written as follows:

LI, 11,11, o, 04y,)

Xy )

= Y Uw(p:(IL)) = Y Y Tysg(my)

xeZ yeX xe 2y
+ L Yo (m-m)+ Y ) (- m)
xeZ ye¥; yEX x€ 2y
+g Z Z (nxv TEXV Tl Z Z Ty — xv)27
xeX ye¥, xeﬂ yeX, (12)

where 7 is a positive constant controlling the convergence.
We have the following result on the distributed algorithm.

Proposition 4. The iterative steps of ADMM to solve (OP-B)
are summarized as follows:

IT(k+1) €arg mlLr% Uyw(px(IT,))
N 2, 03
+ Z E Z y ’
yeo; IS
ITj(k+1) € arg min — TySxy (703
y H;Eg}g XGZ%V yOXy\Fxy
n ‘ (14
- Z OCX)(k)nxy—i_ Z nXV n;y)za
x€Zy xel
Ty (k+1) =arg min — Oty (k) Ty + 0 (k) Ty
Xy
‘ 15)
n n s
5 (T (ke 1) = 1) + 5 (T — 7 (k1))

oy (k+1) = J(k+1) = my(k+1))%, (16)

0y (k) + 1 (7

o (k+1) = o (k) + (e (k+ 1) — 7}, (k+1))%, (17)

where II; := {m )})egx _; represents the solution at tar-
get node £ € X', and I := {1 )}xe%y —y represents the
proposed solution at source node y € %. In addition,
FLim (T > 0.y € %, p < Ty Ty < i, and 7 =
{H;|7r§y >0,x¢€ %Qy < er%,- n;y < Qy}‘

Proof. The proof follows similarly to the proof of Proposi-
tion 1 in [17]. |

The iterations in (13)-(17) can be further simplified to four
iterations.

Proposition 5. The iterations (13)-(17) can be simplified as
follows:

I (k+1) e arg | min wa(px(H;))

n (18)
+ Z Oy (k nxy+ Z o — xy(k))z,
v, ye(y
IL(k+1) € arg min — Y nsy(n)
YTy xez; 19)
n
- Z ax\’(k) xy+ 2 Z (”Xy(k) _”;y)27
x€Zy x€Zy
1
Toy(k+1) = E(7r;y(k+l)err;y(kJrl)), (20)
(k1) = Oy () + 4 (hy (k1) = (k+ 1)) . 1)
Proof. The proof follows similarly to the proof of Proposi-
tion 2 in [17]. |

We summarize the results into the following Algorithm 1.

Algorithm 1 Distributed Algorithm

1: while IT, and IT{ not converging do

2 Compute IT! (k+ 1) using (18), for all x € 2

3: Compute ITj(k+ 1) using (19), for all y € @

4 Compute nxy(k+ 1) using (20), for all {x,y} € &
5 (k+1) using (21), for all {x,y} € &

Compute 0y
6: end while
7. return 7y, (k+1), for all {x,y} € &

Remark: The developed algorithm can be interpreted as a
negotiation process between each pair of connected resource
owner and target node on the security resource allocation
scheme, which does not require a central planner. The final
outcome indicates that the negotiation reaches a consensus.

VI. CASE STUDIES

In this section, we corroborate the developed results by
focusing on the impacts of the behavioral consideration on
the security investment decision-making. We investigate a
transport network consisting of two source nodes (security
resource owners) and five target nodes (assets to protect).
We define the loss parameter at each target as U; = 12,



Upy=9, U3 =5, Uy =3, and Us = 2. Additionally, we use
Prelec’s probability weighting function defined in (2) and the
probability function shown in (5). We set the upper bound of
security resources to g; = 10 units and g, = 4 units, meaning
the maximum amount of security resources the sources can
invest. The utility functions of sy, are considered to be linear.

A. Impact of Behavioral Consideration

We first examine how incorporating the behavioral consid-
erations will impact the transportation of security resources
from the sources to targets. This involves looking at how the
parameter Y affects the outcome of the resource allocation.
We expect that as the parameter y goes to one, the amount of
resources received at each target should be the same as when
misperception is not considered, i.e., the objective function
would be U,(p.(I1,)). Fig. 1(a) corroborates this result. We
can also observe that the target node with a larger value U,
receives more resources, indicating that the system planner
prefers to secure more valuable targets under a constrained
budget. The relationship between the amount of received
resources at targets follows from the order of node’s value Uy
in Assumption 2. Additionally, as the behavioral parameter y
goes to 1, the aggregated loss at the targets converges to the
same value when misperception is not considered, as shown
in Fig. 1(b). It can also be seen that the bounded rational
security investment strategy is not as efficient as the one
under the accurate perception.

B. Performance of Distributed Algorithm

We next show the performance of the proposed distributed
algorithm in Algorithm 1. We use Algorithm 1 to solve the
optimization problem in (OP-B). Fig. 2(a) shows that the
distributed algorithm can efficiently converge to the central-
ized optimal solution. We also examine how the parameter
7, influences the outcome of the transport plan. In the case
study, 7, is set to be the same at every source node, i.e., T, =
T, Vy € #. We leverage the developed distributed algorithm
to compute the optimal strategy for various 7 € [0,1], and
Fig. 2(b) depicts the results. We can observe that when 7
goes to zero in (OP-B), the aggregated loss of target nodes
under the obtained strategy coincides with the one to (OP-
A). This result makes sense as the utility term s,, no longer
plays a role in (OP-B) when 7 = 0. Another remark is that
when T < 0.5, the loss of targets under the solution to (OP-B)
is smaller than the (OP-A) counterpart. This phenomenon is
due to the system planner pays more attention to minimize
the risks of targets when 7 is small. As 7 increases, the
system planner cares more about maximizing the utility of
resource owners, and thus it yields a larger loss of targets as
shown in Fig. 2(b).

VII. CONCLUSION

This paper has developed a behavioral framework for
security investments over a network consisting of multiple
source nodes and heterogeneous target nodes. The behavioral
element captures human’s misperception of the successful
attack probabilities at targets under a given level of security
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Fig. 1.  Impact of behavioral misperception on the security resource
allocation plan. (a): Impact of ¥ on the amount of resources received at
each target node. The solution converges to the one without misperception
as 7 goes to 1. (b): Aggregated loss of the targets with varying y. A larger
degree of misperception yields a less efficient resource transport strategy.

investment. The analysis has shown that the bounded-rational
optimal resource allocation admits a sequential water-filling
nature. In addition, we have discovered that fewer targets
will receive security resources under the behavioral paradigm
compared with the non-behavioral setting, revealing the sub-
optimal feature of the strategy due to the behavioral misper-
ception. We have further developed an efficient distributed
algorithm to compute the resource allocation plan with a
convergence guarantee which enjoys advantages when the
transport network becomes enormous and complex. The case
studies have corroborated that the system planner favors the
higher-valued targets in bounded rational security investment,
often resulting in lower-valued targets receiving smaller
amounts or no resources. Future works include extending
the current framework to an adversarial setting and develop
resilient security investment strategies. Another direction
is to investigate dynamic resource allocation over a time-
horizon with bounded rational agents.
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APPENDIX
A. Proof of Lemma 1

Here, we show that the second derivative of w(p,(I1y))
with respect to 7, Vy € %, is positive. Using the probability
function in (2), we have

azw(px(nx))

on,
dp. (11 2 .
(2248 1 ) - ol T0) (1)
Ty
92 p (T, px(IL) 2
pe(IL) - Px( )_( Pa( ))

= _Y(Y_ 1)(_ IOg(px(Hx))))FzW(Px(nx))

onZ, Oy

(px(nx))2

+ (7~ 1og(pa(m1))"!

.M/px(nx))zw(l’x(nx))'

Ty
The first and third terms multiply out to be positive,
because of Assumption 1. The second term may or

.. . asz(nx)
may not be positive depending on (py(Il) - =55 —
Xy
(‘;‘3‘7({)1;‘))2)/(px(ﬂx))2. If the second term term is positive

than the second derivative is positive and thus the function
is convex. If the term is negative we need to show that:

[ 1y 0ot (20 /1)

OTyy
#(r—toa(putr1) - 22 1)

w(pe(I1,)) > Y(—log(px(I1)) Y 'w(p(ILy))
px(r[x) . 92 px(IT,) _ (8px(nx>)2

0 71'%, d Trxy

(px(ILy))?
With cancellation and some algebraic manipulation, it is easy

to see that the statement is true. Thus, the objective function
is strictly convex.




