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Abstract— Optimal transport (OT) is a framework that
can be used to guide the optimal allocation of a limited
amount of resources. The classical OT paradigm does not
consider malicious attacks in its formulation and thus the
designed transport plan lacks resiliency to an adversary.
To address this concern, we establish an OT framework
that explicitly accounts for the adversarial and stealthy ma-
nipulation of participating nodes in the network during the
transport strategy design. Specifically, we propose a game-
theoretic approach to capture the strategic interactions
between the transport planner and the deceptive attacker.
We analyze the properties of the established two-person
zero-sum game thoroughly. We further develop a fully dis-
tributed algorithm to compute the optimal resilient trans-
port strategies, and show the convergence of the algorithm
to a saddle-point equilibrium. Finally, we demonstrate the
effectiveness of the designed algorithm using case studies.

Index Terms— Discrete Optimal Transport, Distributed
Algorithm, Adversarial Attack, Resilience, Resource Match-
ing

I. INTRODUCTION

OPTIMAL transport (OT) is a centralized framework that
can be leveraged to design efficient resource distribution

and matching schemes [1], [2]. The OT framework captures
heterogeneous constraints between the resource suppliers and
receivers and it has been used in various applications, such
as the distribution of raw materials to manufacturers, dis-
patching of power restoration facilities in disaster affected
neighborhoods, and matching between employees and tasks
in an organization.

Under the standard OT paradigm, the planner designs the
resource allocation scheme that maximizes the aggregated
utility of all participants [3], [4]. The classical framework
does not consider that the resource suppliers and receivers
could be compromised by an attacker whose goal is to disrupt
the resource allocation efficiency. To this end, our goal is to
develop a more robust transport strategy by using a game-
theoretic framework [5] that captures the interactions between
the transport planner and the adversary. Specifically, the plan-
ner designs the transport plan that maximizes the social utility
by anticipating the compromise of a set of participating nodes
by the adversary. In comparison, the attacker’s objective is
to minimize the aggregated utility of all the nodes under the
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transport plan. The attacker is stealthy as it will not modify
the node’s preference information in an arbitrary manner but
considers threshold and magnitude constraints during decision-
making. The considered scenario is related to the resilient
resource allocation under adversarial attacks in literature,
including jamming attack [6], network topology attack [7],
and data falsification attack [8].

The transport network becomes more complex with a grow-
ing number of participants, which can be observed from real-
world applications. This large-scale feature of the OT problem
gives rise to another concern on the centralized computation
of the optimal transport scheme. The required computation for
centralized planning grows exponentially with the number of
participants in the framework. Thus, our goal is to develop
a distributed algorithm for resilient optimal transport such
that the centralized planner is not necessary. We leverage
alternating direction method of multipliers (ADMM) technique
[9] to achieve the distributed transport strategy design. One
feature of the designed ADMM-based distributed algorithm is
that each participant only needs to solve its own problem and
exchange the results with the corresponding connected agents,
which enables parallel updates on the transport solution.

We further develop a best response type of algorithm to
account for the strategic attacks and focus on the scenarios
when a set of targets (i.e., resource receivers) are compro-
mised. Thus, in the algorithm, each deceptive target determines
its resource requests from the connected source nodes and
its manipulations on the preference data. During the iterative
update, each target in the network proposes either a truthful
solution or an adversarial solution depending on whether the
target node is attacked. Comparatively, the source nodes’ goal
of maximizing their utility do not respond to the attacks di-
rectly but in an implicit manner when computing the transport
strategy. This feature can be observed in the designed resilient
algorithm.

The contributions of this paper are summarized as follows.
1) We establish an adversarial discrete optimal transport

framework using a game-theoretic approach that cap-
tures the strategic interactions between the resource
planner and the attacker.

2) We develop an ADMM-based distributed algorithm for
computing the optimal transport strategies in the ad-
versarial environment, where the obtained strategy is
resilient to the attacks.

3) We show the convergence of the proposed distributed
algorithm to a saddle-point equilibrium solution of the
established game, and corroborate the algorithm using



case studies.
The rest of the paper is organized as follows. Section II

formulates a general adversarial OT framework for resource
matching. Section III presents a class of adversarial OT
problem with linear utilities. Section IV develops a distributed
algorithm to compute the resilient optimal transport strategy.
Section V corroborates the results with case studies, and
Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we present a framework of discrete optimal
transport and then formulate an optimal transport problem with
adversaries.

A. Discrete Optimal Transport

We denote X := {1, ..., |X |} the set of destinations (tar-
gets) that receive the resources, and Y := {1, ..., |Y |} the set
of origins (sources) that distribute resources to the targets
in a network. Each source node y ∈ Y is connected to a
number of target nodes denoted by Xy, representing that y
can choose to allocate its resources to a specific group of
destinations Xy. Similarly, each target node x∈X can receive
resources from multiple source nodes, and this set of resource
suppliers to target x is denoted by Yx. Note that Xy, ∀y
and Yx, ∀x are nonempty. For convenience, we denote E
as the set of all feasible transport paths in the network, i.e.,
E := {{x,y}|x ∈Xy,y ∈Yx}. Here, E also refers to the set of
all edges in the established graph for resource transportation.

We next denote by πxy ∈ R+ the amount of resources
transported from the origin node y∈Y to the destination node
x ∈X . We let Π := {πxy}x∈Xy,y∈Y be the designed transport
plan. To this end, the centralized optimal transport problem
can be formulated as follows:

max
Π

∑
x∈X

∑
y∈Yx

txy(πxy)+ ∑
y∈Y

∑
x∈Xy

sxy(πxy) (1)

s.t. px ≤ ∑
y∈Yx

πxy ≤ p̄x, ∀x ∈X , (1a)

q
y
≤ ∑

x∈Xy

πxy ≤ q̄y, ∀y ∈ Y , (1b)

πxy ≥ 0, ∀{x,y} ∈ E , (1c)

where txy : R+→R and sxy : R+→R are utility functions for
target node x and source node y, respectively. Furthermore,
we set p̄x ≥ px ≥ 0, ∀x ∈ X and q̄y ≥ q

y
≥ 0, ∀y ∈ Y .

The constraints px ≤ ∑y∈Yx πxy ≤ p̄x and q
y
≤ ∑x∈Xy πxy ≤

q̄y capture the limitations on the amount of requested and
transferred resources at the target x and source y, respectively.

We have the following assumption on the utility functions.

Assumption 1. The utility functions txy and sxy are concave
and monotonically increasing on πxy, ∀x ∈X ,∀y ∈ Y .

Recall that a function f is concave on an interval if for any
x and y in the interval and for any θ ∈ [0,1], f ((1− θ)x+
θy) ≥ (1− θ) f (x)+ θ f (y). A rich class of functions satisfy
the conditions in Assumption 1. For example, txy and sxy can
be linear on πxy, indicating a linear growth of benefits on the

amount of transferred resources. These two functions can also
admit a logarithmic form, capturing that the marginal utility
decreases with the amount of transported resources.

B. Adversarial Optimal Transport
The attacker’s goal is to minimize the aggregated transport

utility by compromising the preference coefficients in the
target’s utility functions (which can happen at the information
exchange stage). Specifically, the parameters in the utility
function txy are compromised, for x ∈ Xa, y ∈ Yx, where
Xa denotes a subset of adversarial receiver nodes. Then,
Xo :=X \Xa is the set of uncompromised targets. We denote
by t̃xy,ξxy the modified utility under the attack, where ξxy
represents the magnitude of the adversarial modifications on
the corresponding parameters. For example, when the utility
function admits a linear form as txy(πxy) = δxyπxy, where
δxy > 0 is a parameter, the compromised utility form under
the deception attack becomes t̃xy,ξxy(πxy) = (δxy + ξxy)πxy.
As another example, when txy takes a form of txy(πxy) =
δxy min(ζxy,πxy), where ζxy denotes a threshold after which the
benefit of consuming more resources for target x from source
y does not increase, the compromised utility form can be
constructed as t̃xy,ξxy(πxy) = (δxy + ξxy,1)min{ζxy + ξxy,2,πxy}.
In this scenario, the attacker’s action includes both ξxy,1 and
ξxy,2, ∀x ∈ Xa, y ∈ Yx. For a general scenario, we denote
Ξ := {ξxy}x∈Xa,y∈Yx as the attacker’s deceptive strategy. Then,
the adversarial optimal transport can be formulated as follows.

max
Π

min
Ξ

∑
x∈Xa

∑
y∈Yx

txy(πxy)+ ∑
y∈Y

∑
x∈Xy

sxy(πxy)

+ ∑
x∈Xo

∑
y∈Yx

t̃xy,ξxy(πxy)+ ∑
x∈Xa

∑
y∈Yx

l(ξxy)

s.t. (1a), (1b), (1c),
ξξξ x ∈Ax, ∀x ∈Xa,

(2)

where ξξξ x := [ξx1,ξx2, ...,ξx|Yx|], for x∈Xa; Ax is the attacker’s
feasible action set on the target node x ∈Xa; and l : R→R+

is a function capturing the cost of the attack.
Remark: The solution to the adversarial OT problem is

related to the robust OT design. Robust OT also admits a
minimax formulation but its goal is to find an optimal solution
in the presence of structural and known uncertainties. Com-
paratively, in the adversarial OT, such uncertainty is replaced
by strategic attacks, and the designed transport plan should be
resistant to adversarial manipulations.

III. ADVERSARIAL OPTIMAL TRANSPORT UNDER LINEAR
UTILITIES

In this section, we consider utility functions admitting a
linear form for both the sender and receiver. Specifically,
txy(πxy)= δxyπxy and sxy(πxy)= γxyπxy, where δxy,γxy ∈R+. We
assume that the attacker is capable to compromise a subset of
target nodes in the network, denoted by Xa. One interpretation
is that the nodes in Xa do not have a secure communication
protocol with the central planner. In comparison, the nodes
in the set Xo = X \Xa are able to set up high-confidence
communication channels and hence are secure from adversarial
attacks.



The attacker compromises the sensitive parameter δxy, x ∈
Xa,y ∈ Yx, reported by the vulnerable target nodes and can
modify them to new values aiming to decrease the social utility
of resource transportation. The adversarial disruption can be
regarded as a data poisoning attack, under which the utility
parameter δxy is changed to δ̃xy := δxy + ξxy. for x ∈Xa,y ∈
Yx. Here, ξxy denotes the action of the attacker, representing
the magnitude of modification to the particular target utility
parameter δxy. For convenience, we follow the notations in (2),
where Ξ denotes the attacker’s malicious manipulations on the
utility parameters, and ξξξ x is the attacker’s action on the target
node x ∈Xa.

To this end, the adversarial OT can be formulated in the
following max-min format:

max
Π

min
Ξ

U(Π,Ξ) = ∑
x∈Xo

∑
y∈Yx

δxyπxy + ∑
y∈Y

∑
x∈Xy

γxyπxy

+ ∑
x∈Xa

∑
y∈Yx

(δxy +ξxy)πxy + ca ∑
x∈Xa

‖ξξξ x‖1

s.t. (1a), (1b), (1c),
ξξξ x ∈Ax, ∀x ∈Xa,

(3)

where ca ∈R+ is a non-negative cost coefficient and Ax is the
feasible action set of the attacker on target node x, x ∈Xa.
U is the objective value under strategies Π and Ξ. The term
ca ∑x∈Xa ‖ξξξ x‖1 captures the cost of the attack. The sparsity
induced by the l1 norm is a convex approximation of the
l0 norm [9, Chapter 6] and indicates that the attacker has
constraints on the number of compromise of utility parameters
at a particular node x ∈Xa. The attacker is a minimizer of
(3) as its goal is to minimize the aggregated transport utility
reflected by the first three terms in the objective function U
while using the least costly attack scheme captured by the last
term in U .

Note that if the attacker modifies all the utility parameters
significantly, it is easy for the planner to detect such adversarial
perturbations. Also, the parameter δ̃xy after compromise should
still be non-negative. Thus, one form of Ax can be chosen as
follows:

Ax = {ξξξ x|‖ξξξ x‖2
2 ≤ κx,ξξξ x +δδδ x ≥ 000}, x ∈Xa, (4)

where κx ∈ R+ denotes the upper limit of the standard norm
of adversarial modifications at the target node x ∈Xa by the
attacker; δδδ x := [δx1;δx2; ...;δx|Yx|]; and 000 is a zero vector with
appropriate dimension.

Problem (3) can be seen as a two-person zero-sum game
denoted by G, where the transport planner is a maximizer
and the attacker is a minimizer. The solution to the game G
is characterized by the Nash equilibrium which predicts the
outcome of the optimal transport strategy under adversarial
environment. The formal definition of the Nash equilibrium
strategy [5] is presented as follows.

Definition 1 (Nash Equilibrium). The strategy pair {Π∗,Ξ∗}
is a saddle-point Nash equilibrium of game G if

U(Π,Ξ∗)≤U(Π∗,Ξ∗)≤U(Π∗,Ξ), ∀ Π,Ξ, (5)

where U is the objective function in (3).

Solving game G requires addressing the formulated max-
min problem (3). Specifically, both the central planner and
the attacker need to compute their solutions holistically. This
centralized computation paradigm does not scale well as the
number of nodes in the transport network becomes large.
Furthermore, to compute the solution Π, the central planner
is required to have complete information on the transport
network, including the utility parameters of all participants.
Thus, it is imperative to design a computationally efficient
mechanism to solve game G. Our subsequent goal is to solve
problem (3) to obtain the equilibrium transport strategy by
developing a distributed algorithm.

Note that the utility functions are not constrained to take
a linear form. The developed analytical and computational
results in the subsequent sections can be generalized to other
scenarios for functions satisfying Assumption 1 straightfor-
wardly such that the two-person game admits convex-concave
property and min-max interchangeability.

IV. ANALYSIS AND DISTRIBUTED ALGORITHM

In this section, we aim to design a fully distributed algorithm
to compute the optimal strategies of the attacker and the
participants by solving (3).

A. Equivalence between Max-Min and Minimax
Problems

Before designing the algorithm, we prove that the for-
mulated max-min problem (3) is equivalent to its minimax
counterpart and hence show the existence of Nash equilibrium
to game G. Specifically, we have the following results.

Proposition 1. The max-min problem (3) yields the same
solution as its minimax counterpart, i.e., minΞ maxΠ U(Π,Ξ)
subject to the same set of the constraints as in (3). Thus, there
exists a saddle point Nash equilibrium to game G. However,
such equilibrium is not necessarily unique.

Proof. The equivalence between max-min and minimax prob-
lems directly follows from the von Neumann’s minimax the-
orem [10]. As the objective function U is not strictly concave
in Π and not strictly convex in Ξ, the Nash equilibrium is not
necessarily unique [5, Chapter 4]. �

Note that Proposition 1 facilitates a convenient design of
efficient mechanisms called best-response dynamics in finding
the equilibrium strategies. We will design distributed update
schemes for the attacker and the nodes in the subsequent
Sections IV-B and IV-C, respectively, and then combine them
together in Section IV-D.

B. Distributed Updates on the Deception Strategy
The attacker deceives the transport planner by compromis-

ing δxy, x∈Xa,y∈Yx, strategically. As the attacker’s goal is to
minimize U , a smaller δ̃xy (hence a smaller δxy) will decrease
the utility at the corresponding target node as indicated by the
term ∑x∈Xa ∑y∈Yx(δxy + ξxy)πxy. However, simply modifying
the values of all δxy, ∀x ∈ Xa,y ∈ Yx, to their minimum
does not guarantee to minimize U . One reason is that the



transport strategy will change under attacks. Though the value
of ∑x∈Xa ∑y∈Yx(δxy + ξxy)πxy decreases, other terms such as
∑x∈Xo ∑y∈Yx δxyπxy and ∑y∈Y ∑x∈Xy γxyπxy may increase under
the attack. Thus, the attacker’s deceptive strategy is nontrivial
to devise.

In the following, we describe how to leverage best-response
dynamics to compute the strategy. Specifically, the attacker
updates its decision Ξ by fixing the transport planner’s strategy
Π′ = {π ′xy}x∈Xy,y∈Y . In this regard, the first two terms in
the objective function U(Π,Ξ) and the first three constraints
in (3) can be safely ignored as they are irrelevant with the
attacker’s deceptive strategy design. Thus, the attacker solves
the following optimization program:

min
Ξ

∑
x∈Xa

∑
y∈Yx

ξxyπ
′
xy + ca ∑

x∈Xa

‖ξξξ x‖1

s.t. ξξξ x ∈Ax, ∀x ∈Xa.
(6)

The attacker can design the optimal deceptive strategy Ξ∗ in
a distributed fashion. First, we observe that the cost function
in (6) is decoupled across vulnerable target nodes. Then, the
optimal ξξξ

∗
x , ∀x ∈Xa, can be obtained separately. Solving (6)

is thus equivalent to addressing |Xa| sub-problems as follows,
for x ∈Xa,

min
ξξξ x

∑
y∈Yx

ξxyπ
′
xy + ca‖ξξξ x‖1

s.t. ξξξ x ∈Ax.
(7)

We can further rewrite (7) in the following form, for x ∈Xa:

min
ξξξ x,χχχx

∑
y∈Yx

ξxyπ
′
xy +111T

χχχx

s.t. ξξξ x ∈Ax, caξξξ x ≤ χχχx, caξξξ x ≥−χχχx,
(8)

where 111 is a vector of appropriate dimension with all ones;
T denotes the transpose operator; and χχχx is an auxiliary |Yx|-
dimensional decision variable. Note that the objective function
in (8) is linear and the constraints are convex, and thus (8) can
be solved efficiently.

C. Distributed Updates on the Transport Strategy
Under the best-response mechanism, similarly, the transport

planner determines the transport strategy by regarding the de-
ceptive strategy Ξ′= {ξ ′xy}x∈Xa,y∈Yx as fixed. Thus, the planner
can omit the last term in the objective function U(Π,Ξ) and the
last constraint in (3) when making the decision. The planner’s
problem can be formulated as follows.

max
Π

∑
x∈Xo

∑
y∈Yx

δxyπxy + ∑
y∈Y

∑
x∈Xy

γxyπxy

+ ∑
x∈Xa

∑
y∈Yx

(δxy +ξ
′
xy)πxy

s.t. (1a), (1b), (1c).

(9)

Solving (9) in a centralized manner requires the transport
planner to know all parameters including δxy and γxy, ∀{x,y} ∈
E . Our next goal is to design a distributed method to compute
the optimal Π in (9). First, we introduce auxiliary variables π t

xy
and πs

xy denoting the amount of resources requested by target
x from source y and source y offering to target x, respectively.
These two transport plans should be equal to each other to

reach a consensus. Thus, we have constraints π t
xy = πxy and

πxy = πs
xy, ∀{x,y} ∈ E . Then, (9) can be reformulated as

min
Πt∈Ft ,Πs∈Fs,Π

− ∑
x∈Xo

∑
y∈Yx

δxyπ
t
xy− ∑

y∈Y
∑

x∈Xy

γxyπ
s
xy

− ∑
x∈Xa

∑
y∈Yx

(δxy +ξ
′
xy)π

t
xy

s.t. π
t
xy = πxy,∀{x,y} ∈ E ,

πxy = π
s
xy,∀{x,y} ∈ E ,

(10)

where Πt := {π t
xy}x∈Xy,y∈Y , Πs := {πs

xy}x∈X ,y∈Yx,, Ft :=
{Πt |π t

xy ≥ 0, px ≤ ∑y∈Yx π t
xy ≤ p̄x,{x,y} ∈ E }, and Fs :=

{Πs|πs
xy ≥ 0,q

y
≤ ∑x∈Xy πs

xy ≤ q̄y,{x,y} ∈ E }.
From the convex form of the formulation we can obtain the

Lagrangian:

L(Πt ,Πs,Π,α t
xy,α

s
xy) =− ∑

x∈Xo

∑
y∈Yx

δxyπ
t
xy− ∑

y∈Y
∑

x∈Xy

γxyπ
s
xy

− ∑
x∈Xa

∑
y∈Yx

(
δxy +ξ

′
xy
)

π
t
xy + ∑

x∈X
∑

y∈Yx

α
t
xy
(
π

t
xy−πxy

)
+ ∑

y∈Y
∑

x∈Xy

α
s
xy
(
πxy−π

s
xy
)
+

η

2 ∑
x∈X

∑
y∈Yx

(
π

t
xy−πxy

)2

+
η

2 ∑
x∈X

∑
y∈Yx

(
πxy−π

s
xy
)2
.

(11)
Here, α t

xy and αs
xy are Lagrangian multipliers associated with

the constraints, and η is a positive constant.

Theorem 1. We obtain the following steps by applying ADMM
algorithm to (11):

Π
t
x(k+1) ∈ arg min

Πt
x∈F t

x
− ∑

y∈Yx

δxyπ
t
xy + ∑

y∈Yx

α
t
xy(k)π

t
xy

+
η

2 ∑
y∈Yx

(
π

t
xy−πxy(k)

)2
, for x ∈Xo,

(12)

Π
t
x(k+1) ∈ arg min

Πt
x∈F t

x
− ∑

y∈Yx

(
δxy +ξ

′
xy
)

π
t
xy

+ ∑
y∈Yx

α
t
xy(k)π

t
xy +

η

2 ∑
y∈Yx

(
π

t
xy−πxy(k)

)2
, for x ∈Xa,

(13)

Π
s
y(k+1) ∈ arg min

Πs
y∈F s

y
− ∑

x∈Xy

γxyπ
s
xy + ∑

x∈Xy

α
s
xy(k)π

s
xy

+
η

2 ∑
x∈Xy

(
πxy(k)−π

s
xy
)
,

(14)

πxy(k+1) ∈ argmin
πxy

α
t
xy(k)πxy +α

s
xy(k)πxy

+
η

2
(π t

xy(k+1)−πxy)
2 +

η

2
(πxy−π

s
xy(k+1))2,

(15)

α
t
xy(k+1) = α

t
xy(k)+η(π t

xy(k+1)−πxy(k+1))2, (16)

α
s
xy(k+1) = α

s
xy(k)+η(πxy(k+1)−π

s
xy(k+1))2, (17)

where Πt
x̃ = {π t

xy}y∈Yx,x=x̃ and Πs
ỹ = {πs

xy}x∈Xy,y=ỹ denote the
transport strategy computed by target node x̃ and source node
ỹ, respectively.

Additionally, we define F t
x := {Πt

x|π t
xy ≥ 0,y ∈ Yx, px ≤

∑y∈Yx π t
xy ≤ p̄x} and F s

y := {Πs
y|πs

xy ≥ 0,x ∈ Xy,qy
≤

∑x∈Xy πs
xy ≤ q̄x}.



Proof. Let ~x = [~ΠtT
x ,~ΠT]T, ~y = [~ΠT,~ΠsT

y ]T, and α =
[{αs

xy}T,{α t
xy}T]T, where T and~ denote the transpose and

vectorization operator. Note that these three vectors are all
2|E |×1. Now we can write the constraints in (10) in a matrix
form such that A~x = ~y, where A = [I,0;0,I] with I and 0
denoting the |E |-dimensional identity and zero matrices, re-
spectively. Next, we note that~x∈F t

~x and~y∈F s
~y , where F t

~x =
{~x|π t

xy ≥ 0, px ≤ ∑y∈Yx π t
xy ≤ p̄x,{x,y} ∈ E }, F s

~y := {~y|πs
xy ≥

0,q
y
≤ ∑x∈Xy πs

xy ≤ q̄y,{x,y} ∈ E }. Then, we can solve (10)
using the iterations: 1) ~x(k+1) ∈ argmin~x∈F t

~x
L(~x,~y(k),α(k));

2) ~y(k + 1) ∈ argmin~y∈F s
~y

L(~x(k + 1),~y,α(k)); 3) α(k + 1) =
α(k) + η(A~x(k + 1)−~y(k + 1)), based on [9]. Because we
have no couplings among Πt

x,Π
s
y,Π,α t

xy and αs
xy, the above

iterations can be equivalently decomposed to (12)-(17). �

Proposition 2. Iterations (15)-(17) can be simplified as:

πxy(k+1) =
1
2
(
π

t
xy(k+1)+π

s
xy(k+1)

)
, (18)

αxy(k+1) = αxy(k)+
η

2
(
π

t
xy(k+1)−π

s
xy(k+1)

)
. (19)

Proof. As (15) is strictly concave, we can solve it by first-
order condition: πxy(k+1) = 1

2η
(α t

xy(k)−αs
xy(k))+

1
2 (π

t
xy(k+

1)+πs
xy(k+1)). By substituting the above equation into (16)

and (17), we get α t
xy(k+1) = 1

2 (α
t
xy(k)+αs

xy(k))+
η

2 (π
t
xy(k+

1)−πs
xy(k+1)), αs

xy(k+1) = 1
2 (α

t
xy(k)+αs

xy(k))+
η

2 (π
t
xy(k+

1)− πs
xy(k+ 1)). Thus, α t

xy = αs
xy during each update. Then,

πxy(k + 1) can be simplified as πxy(k + 1) = 1
2 (π

t
xy(k + 1) +

πs
xy(k+ 1)) shown in (18). In addition, we can achieve (16)

and (17) from α t
xy = αs

xy = αxy in (19).
�

Theorem 2. The algorithm in Theorem 1 with simplifications
in Proposition 2 converges to an optimal solution.

Proof. The convergence of the algorithm directly follows from
the general arguments in [9, Section 3.2]. �

In the above proposed distributed algorithm, each node
computes its transport strategy based on the local information,
i.e., information of connected nodes rather than all the nodes.
The nodes update their strategies iteratively by communicating
with connected neighbors. This is different from the central-
ized computation where the central planner needs to know
all nodes’ information to design the transport plan and then
broadcasts the decision to the nodes.

D. Integrated Distributed Algorithm
We combine the algorithms for the attacker and the partici-

pants into one distributed algorithm. The integrated algorithm
follows the updates below.

ξξξ x(k+1) ∈arg min
ξξξ x,χχχx

∑
y∈Yx

ξxyπxy(k)+111T
χχχx

s.t. ξξξ x ∈Ax, caξξξ x ≤ χχχx, caξξξ x ≥−χχχx.
(20)

Π
t
x(k+1) ∈ arg min

Πt
x∈F t

x
− ∑

y∈Yx

δxyπ
t
xy + ∑

y∈Yx

αxy(k)π t
xy

+
η

2 ∑
y∈Yx

(
π

t
xy−πxy(k)

)2
, for x ∈Xo,

(21)

Π
t
x(k+1) ∈ arg min

Πt
x∈F t

x
− ∑

y∈Yx

(δxy +ξxy(k))π
t
xy

+ ∑
y∈Yx

αxy(k)π t
xy +

η

2 ∑
y∈Yx

(
π

t
xy−πxy(k)

)2
, for x ∈Xa,

(22)

Π
s
y(k+1) ∈ arg min

Πs
y∈F s

y
− ∑

x∈Xy

γxyπ
s
xy + ∑

x∈Xy

αxy(k)πs
xy

+
η

2 ∑
x∈Xy

(
πxy(k)−π

s
xy
)
,

(23)

πxy(k+1) =
1
2
(
π

t
x(k+1)+π

s
y(k+1)

)
, (24)

αxy(k+1) = αxy(k)+
η

2
(
π

t
xy(k+1)−π

s
xy(k+1)

)
. (25)

The convergence of the integrated distributed algorithm is
worth investigation. We have the following result.

Theorem 3. The designed integrated distributed algorithm
(20)-(25) converges to a saddle-point equilibrium.

Proof. Based on Proposition 1, we know that there exists an
equilibrium with {ξξξ ∗x}x∈Xa and Π∗ to the minimax game G.
Theorem 2 further shows that the max-problem (9) converges
to the best response of the min-problem (8). Note that the
trajectory of best response dynamics for continuous concave-
convex zero-sum games always converges to saddle points
[11]. Thus, the developed integrated distributed algorithm (20)-
(25) converges to {ξξξ ∗x}x∈Xa and Π∗. �

For convenience, we summarize the integrated distributed
algorithm in Algorithm 1.

Algorithm 1 Integrated Distributed Algorithm

1: while ξξξ x, Πt
x and Πs

y not converging do
2: Compute ξξξ x(k+1) using (20), ∀x ∈Xa
3: Compute Πt

x(k+1) using (21), ∀x ∈Xo
4: Compute Πt

x(k+1) using (22), ∀x ∈Xa
5: Compute Πs

y(k+1) using (23), ∀y ∈ Y
6: Compute πxy(k+1) using (24), ∀{x,y} ∈ E
7: Compute αxy(k+1) using (25), ∀{x,y} ∈ E
8: end while
9: return ξξξ x(k+1), ∀x ∈Xa and πxy(k+1), ∀{x,y} ∈ E

V. CASE STUDIES

In this section we corroborate our algorithm for distributed
OT while considering adversarial opponents. We consider
the first case with five target nodes and two source nodes
with a network structure connecting every source node to
every target node. The upper bounds for the source nodes
are p̄1 = 2, p̄2 = 3, p̄3 = 4, p̄4 = 3, p̄5 = 2, q̄1 = 5, and
q̄2 = 5.5. The lower bound for all nodes are set to 0.
Additionally, we consider linear utility functions txy(πxy) =
δxyπxy, and sxy(πxy) = γxyπxy,∀{x,y} ∈ E . The correspond-
ing parameters in the linear functions are selected as fol-

lows: [δxy]x∈X ,y∈Y =

[
4 12 4 12 8
8 8 16 4 4

]
, [γxy]x∈X ,y∈Y =[

6 4.5 12 6 9
3 6 7.5 9 12

]
. The adversary’s parameters are ca =



(a) Social Utility (b) Distance Residual

Fig. 1: Impact of the adversarial attacks on the transport
strategy design. (a) and (b) depict the trajectories of social
utility and residual of transport strategy, respectively.

(a) Attacker’s Strategy (b) Transport Plan

Fig. 2: (a) shows the attacker’s strategy at the target nodes 2
and 5. (b) shows the corresponding transport plans.

0.5 and κx = 15, ∀x ∈Xa, and the deceptive targets include
nodes 2 and 5. We next design the resilient transport strategy
using the proposed distributed algorithm.

First, we show that the algorithm works and converges to
the same value obtained by the centralized method. We also
compare the transport strategies when the network with and
without adversaries. When there is an adversary, we use a
combination of (21) (for benign targets) and (22) (for deceptive
targets) to calculate Πt

x(k + 1). When there is no adversary,
meaning none of the nodes are compromised, we only use (22)
to compute Πt

x. The results are shown in Fig. 1. Specifically,
Fig. 1(a) shows the social utility which is the aggregated
payoff of all nodes. Fig. 1(a) highlights that the algorithm
converges to the centralized solution in both scenarios with
and without attacks. We also note that when we consider an
attack the algorithm converges to a lower social utility. This
is due to the fact that we have to account for the adversarial
impacts which decreases the desired utility between the source
node and the compromised target node. Fig. 1(b) highlights
the distance residual of the transport strategy, which measures
the difference between the strategy at each step and the equi-
librium solution. The attacker’s strategy ξξξ x is shown in Fig.
2(a). For both compromised nodes, the deceptive strategies
ξξξ 2 and ξξξ 5 converge to a nonzero values, indicating that
the attacker is actively affecting the transport plan. Fig. 2(b)
further illustrates this phenomenon as the resource allocation
strategies are different in the two investigated cases.

We further investigate a larger scale network with 30 targets
and 3 sources. The results can be found in [12].

VI. CONCLUSION

In this paper, we have investigated an adversarial discrete
optimal transport framework for resource matching in which
the participating nodes could be malicious by reporting un-
truthful preference parameters. We have developed a dis-
tributed algorithm for computing the strategic resource alloca-
tion strategies which are resilient to such attacks. The designed
algorithm converges to a same solution as one designed by a
centralized planner, and it is applicable to large scale networks
susceptible to deceptive attacks. The adversarial behavior is
specifically acknowledged in the algorithm when a partici-
pating node is compromised. Each connected pair of target
and source nodes negotiate on the their proposed transport
plans, and thus the compromised node’s actions is taken
into account in the final allocation schemes. The algorithm
terminates when the sources and targets reach a consensus.
Future work includes to consider the differential privacy of
the nodes when designing the algorithm. Another direction
is to develop a formal metric to quantify the stealthiness of
the attacker and integrate it with the established adversarial
optimal transport framework.
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